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ABSTRACT 

The paper describes a phase-sensitive photothermal technique for the 

determination of the thermal conductance of a crack or interface embedded within a 

plate of finite thickness.  The technique involves sinusoidally-modulated heating at 

one point on the surface using a focused laser beam and measurement of the phase 

shift of the thermal wave at some other point. An analysis is presented for the 

relationship between the phase lag, the modulation frequency, the specimen 

geometry, and the thermal properties of both the interface and the solid. The 

technique is demonstrated using a model system comprising two stainless steel 

disks, with the "interfaces" between them being formed either by simply placing the 

two disks in contact with each another, or by placing thin layers of polyethylene 

sheets between the disks. The trends are rationalized on the basis of the thermal 

properties of the constituents. 
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INTRODUCTION 

The present article describes a photothermal technique and the associated 

analysis for the determination of the thermal conductance of a crack or interface 

embedded within a plate of finite thickness. The technique is based on periodic 

heating at a point on one surface, using, for example, a focused laser beam, and 

measurement of the phase lag of the thermal wave at some other point. In the 

absence of an interface, the technique can be used to determine the thermal 

diffusivity of the material. The work is motivated by concurrent studies on the 

thermal conductance of delamination cracks in fiber-reinforced ceramic matrix 

composites (CMCs) and its effect on failure in the presence of a temperature 

gradient. An example of such a crack is shown in Fig. 1. Although the technique is 

being developed mainly to study CMCs, it can be applied readily to other problems 

involving interfaces or cracks in multilayered or coated systems. 

Photothermal techniques have been used extensively to study the thermal 

properties of materials [1-12]. A recent summary of these can be found in [12]. The 

techniques have been used also as nondestructive tools for detecting sub-surface 

defects [12-18]. The focus of the present work is on one specific subgroup of these 

techniques, notably, that based upon periodic heating and phase lag measurement. 

The main advantage of the present technique is that it provides quantitative 

information about the thermal conductance of cracks and interfaces, rather than 

simply identifying regions where such defects are present. This information is 

crucial for failure prediction in a broad range of technological systems, including 

delamination of thermally-loaded CMC structures, multilayered power electronic 

devices and thermal barrier coatings. 

In the past, thermal conductances have been measured predominantly by dc 

techniques [19-22]. These techniques require a heat flux, q, to flow through the 
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interface as well as through the bulk of the two contacting solids. The temperature 

distribution in the bulk solid is measured and extrapolated to the interface to 

estimate the interfacial temperature jump, AT*. The contact conductance is then 

estimated by the relation, h = q/ATi. Although this technique is widely used, it 

suffers from several drawbacks. First, the heat flux must be constant over the bulk 

of both contacting solids which requires insulation material to be placed around the 

specimen.  Second, it requires a cooling unit to remove the heat from the system; 

otherwise, the temperature of the sample increases monotonically with time. 

Finally, since the temperature distribution needs to be measured in the bulk, the 

samples must be sufficiently thick for at least three thermocouples to be inserted. 

Consequently, the technique is not easily adapted for measurement in small scale 

specimens or structures. The ac technique described in the present paper has several 

advantages over the existing dc techniques. Notably, it does not require insulation of 

the system from the surroundings nor of a cooling unit to extract heat. Moreover, it 

can be performed relatively quickly on both large and small specimens. 

The paper is organized in the following way. Section 2 describes an analysis 

for the temperature distribution and phase lag in a finite plate containing an 

interface parallel to the plate surfaces and heated periodically at one point on the 

surface. The approach used to solve the problem is based on standard concepts of 

heat flow through solids and across interfaces [23]. Both generic solutions and 

specific numerical results for the phase lag are presented and used in guiding the 

experimental program. Section 3 describes an experimental demonstration of the 

use of the technique for determining both the thermal diffusivity of a steel alloy 

with known thermal properties as well as the interface conductance in a series of 

model systems comprising steel disks with several different types of interfaces. 

Section 4 provides some concluding remarks. The use of the technique to determine 
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the thermal conductance of delamination cracks in CMCs is presented elsewhere 

[24]. 

2.        ANALYSIS 

2.1      Preliminaries 

A schematic of the specimen geometry to be analyzed is shown in Fig. 2. The 

specimen is considered to be infinite in the x-y plane and of thickness A in the 

z-direction. An interface (or crack) is situated parallel to the top and bottom surfaces 

at z = B, with z being measured from the top surface. (This geometry closely 

resembles the one of the CMC panel with a centrally-located delamination crack, 

illustrated in Fig. 1.) The thermal diffusivity and conductivity of the material 

outside of the interface are denoted a and k, and the thermal conductance of the 

interface is denoted h. A useful normalized form of these parameters is given by 

p = JL. CU K 2Ah 

(This parameter is essentially the inverse of the corresponding Biot number, b; the 

two are related through p=l/2b.) The limiting case of p = 0 can be viewed either as 

one in which there is no interface or, equivalently, one in which the interface is 

perfectly conducting. 

A periodic heat source is input at (r, z) = (0,0) at a frequency, <D = 2%ir with f 

being the frequency in Hz. The corresponding wave number, ß, is given by 

ß = A/co/2a = ^rcf/a (2) 
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The top and bottom surfaces are taken to be perfectly insulating. In the following 

analysis, expressions are obtained for the temperature and the phase lag relative to 

the heat input at various positions within the specimen. 

2.2      Solution of the Diffusion Equation 

With regard to the sketch in Fig. 2, the problem is axisymmetric, so that the 

temperature depends on the radial distance r from the z-axis. The temperatures in 

the regions B>z>OandA>z>Bare denoted v(r,z, t) and u(r,z,t), respectively; 

they are required to satisfy the heat flow equations [19] 

92u      1 3u      <^u _ Idu   =   0 (3a) 
9r2      r 9r      dz2      a 3t 

£Z + i^L + £l - i—   =   0 (3b) 
9r2       r 3r      3z2      a dt 

Across the interface, z = B, there is a heat flow balance and the discontinuous 

temperature jump is proportional to the flux so that the two equations 

du   _   dv_ (4a) 
9z dz 

=   £(u-v) W 
is. 

must be satisfied. 

The flux condition on the top surface is given by 

_k3v   =     Q  H(a-r)cos(öt 
3z 7ta 
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where H (a-r) is the step function, Q is the power, a is the radius of the spot and © is 

the angular frequency. Ultimately, the spot radius a is shrunk to zero so that it 

becomes a point source and hence the details of the intensity distribution across the 

beam radius can be neglected. The real part of 

_k^L   =   exp[-ia>t]-%H(a-r) 
dz Tea 

(5) 

7ia 
=   exp[-icat]-^-f JiMJoMdX 

re presents the flux and the discontinuous integral is Weber's well-known result. 

The boundary condition on the bottom surface, z = A, is 

3u   = (6) 
dz 

so the heat loss there is neglected. 

Only the steady periodic behavior is of interest and it is easily verified that 

forms of the type f (X) exp [± r\z] Jo (Xx) exp [-tot] satisfy the heat flow equations given 

in Eqns. (3a, b) where f (X) is an arbitrary function of X and where 

2 mMl „2=-^ (7) 
a r\   =   -JX?+p2      with      p 

The complex temperatures can then be represented by the integrals 

oo 

v(r,zt)   =   exp[-icöt]J[E(Ti)coshTiz + F(Ti)exp[-Tiz]]jo(Xx)XdX. (8a) 
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u(r,zt)   =   exp[-i©t]J D(n)coshn(A-z)J0(Xr)XdX (8b) 

where the real parts are of interest here. The boundary condition in Eqn. (6) is 

satisfied by Eqn. (8b). The coefficients E ft), F ft) and D ft) (which depend only upon 

n), are found using Eqns. (4a), (4b) and (5); they are 

D(TO 

E(1) 

Q   Jifia) Q 
krcn   Xa        2k7rri 

asa-»0 

2k7tn 

Q 
2k7CT| 

sinhrj A + 2A pn sinhnB sinhnC 

e-TlB (sinhn A + 2A pn sinhnB sinhnC) - sinhnC 

sinhnB (sinhnA + 2A pn. sinhnB sinhnC) 

(9) 

where C = B - A. The term in Eqn. (8a) corresponding to the coefficient F ft) 

represents the temperature caused by a periodic point source at the origin in an 

infinite half space. The influence of the interface and the "images" generated by the 

top and bottom surfaces are given by the coefficient E ft). If the interface is perfectly 

conducing i.e. p = 0, the integral can be found in series form and is identical to the 

result obtained by using the method of images where point sources are 

symmetrically placed along the z axis. In general, for p * 0, it is necessary to resort to 

numerical integration of Eqns. (8a) and (b). In the experiments, the temperatures on 

the top and bottom surfaces are of special interest. These are given by 

v(r,0,t)   =   exp[-icot] 
2rck       r { 

(10a) 

70:FZ6Sf8/12/97)January  13,  1998-3:25 PM/mef 

8 



Jo(fa:)XdX v Q        r • ^i   f  JolArjAüA  
U(r'A'1)   =   2^keXpl      JH ^(smhnA + ZApiisinh^BsinhTiC) 

(10b) 

Both of these expressions are in the form of complex numbers and the temperature 

is given by the real part. For example the complex temperature on the bottom can be 

written as 

u(r,A,t)   =   |u(r,A,t)|exp[-i(e>t-<(>)] 

and the phase lag is the argument <j> of the complex portion given by the {...} brackets. 

2.3      Determination of Thermal Diffusivity (p = 0) 

In the absence of an interface (p=0), the phase lag is determined by the 

thermal diffusivity, a. For the purpose of determining a, it is convenient to 

measure the temperature on the top surface (e.g. Pi in Fig. 2). In this case, the 

integral in Eqn. 10 can be evaluated as an infinite series, yielding the result 

v0(r,0,t) = 
Qe -icot 

27ck 

exp[-ß(l-i)Rn] (11) 
n=0,±2,±4,... 

where Rn = "\/r2 + n2A2. This result is equivalent to that obtained from the method 

of images, using a line of image sources placed along the z-axis with the sources 

located symmetrically at intervals of 2A so as to satisfy the adiabatic conditions at 

z = 0 and z = A. The quantity given by the summation is denoted S and can be 

written as 

S   =   iSle1*   =       X     exP 
n=0,±2,±4... 

-ß(l-j)Rn 
R„ 

(12) 
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10 

where § is the phase lag with respect to the input source. 

Figure 3(a) shows the variation in (j) with ßr for various values of r/A. When 

r/A « 1, the term corresponding to n = 0 in Eqn. (12) dominates. This situation is 

identical to that of a point source in an infinite body, wherein the phase lag is 

simply <(> = ßr. For larger values of r/A, the image sources contribute progressively 

more to the sum. When r/A » 1, the behavior resembles that of a line source along 

z = 0. The summation can then be approximated by 

where K0 is a modified Bessel function of the second kind of order zero. This 

solution is also shown on Fig. 3(a). It provides a good approximation to the point 

source solution for r/A > 1 and low values of ßr. Furthermore, using the asymptotic 

properties of the Bessel function, the phase lag tends to 

<j>   =   ßr + 7t/8 (14) 

for high values of ßr, as shown in Fig. 3(a). 

Solutions for the phase lag at other locations on the specimen can be derived 

in a similar manner. For example, the temperature along the bottom surface can be 

written as 

(   A A        Qe_i<*      V      expf-ß(l-i)Rn] (15) u0(r,A,t)   =   ——      L R 
v 

Z7CK      n=+l.i3.±5... lxn 
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11 

and the phase lag then obtained from the argument of the summed series. Some 

numerical results for the phase lag along the bottom surface are presented in 

Fig. 3(b). 

2.4      Effect of Interface Resistance on the Phase Lag 

In the presence of an interface with a finite conductance (p * 0), the phase lag 

is larger than it is in the pristine material. This lag can be measured and interpreted 

most conveniently on the bottom surface directly beneath the heat source (point P0 

in Fig. 2). Here the case where the interface is at the mid-plane, i.e. B = C = A/2, is 

considered. The expression for u (0, A, t), from Eqn. (10b), is 

u(0,A,t)   =   ^«PH0*!' 
XdX 

J  r\ (sinhn. A + A p-q {cosh TIA -1}) 
(16) 

This integral was solved using Simpson's parabolic formula. For the limiting case 

where p = 0 the results of this numerical integration were identical to those obtained 

using the series in Eqn. (15). Fig. 4 shows the variation in phase lag * with 

ßA (= yfizl/ä A) for values of p ranging from 0 to 103. 

Approximate solutions for the phase lag * at high and low frequencies have 

been obtained as described below and here an alternate form for the integral in 

Eqn. (16) is given. By defining the two quantities 

a   =   pA   =   ßA(l-i) (17) 

X   =   nA 

the integral can be rewritten as 
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U(°'A''> = MK^-^ 1 dX 
sinhX + pX(coshX-l) 

(18) 

which has been obtained by the change in variable. 

2.4.2   High Frequency Behavior (ßA > 2) 

At sufficiently high frequencies, the magnitude of pA becomes large so that 

the hyperbolic terms can be replaced by exponentials. This is a reasonable 

approximation for ßA > 2. The integral in (16) can be rewritten as 

u(o,A,t) - 2£ j 'J£tx^L . 2£ ssm E(v) v        '       7tkA i      1 + pX 7ikA p 
(19) 

where 

Y = a + 1/p (20) 

and 

Ei(Y)   =   Jei£t^dX (21) 

Ei (Y) is the exponential integral whose properties are well known. For example, 

Ei (Y) ~ e-Y/Y when IYI » 1, and Ei (Y) ~ -In (Y) when IYI «1. For intermediate 

values of Y, the integral must be evaluated using known algorithms: the Taylor 

series for small values of Y and the method of continued fractions for large values 

of Y. In this limit, the phase lag is given by 
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* = arg{Ei(Y)} (22) 

Eqn. (22) is reasonably accurate in the domain ßA > 2, as shown by the dotted lines in 

Fig. 4. 

A further approximation can be made when Y = o + 1/p becomes large, either 

at very high frequencies (ßA » 1) or when the interface resistance is low (p -» 0). 

From an experimental viewpoint, the measurement of temperature is difficult at 

very high frequencies because the penetration depth is small and hence the signal 

decays rapidly with distance; consequently, the case of practical interest is the one in 

which p -* 0. The exponential integral then becomes 

Ei(Y) -  ,   P   v exp V (1 + pa) 
- o + %1 (23) 

and the corresponding phase lag is 

(   PßA  ^ (j) ~ ßA + arctan 
1+pßAj 

-   ßA(l + p) (24) 

This is a useful formula because it reveals the first order effect of the interface upon 

the phase lag. It becomes increasingly more accurate as p becomes small compared 

with unity. 

2.4.2   Low Frequency Behavior (ßA<0.1) 

There is a singularity in the phase lag near ßA = 0 as p -* «; the phase lag 

jumps from 0 to JC/2 over the approximate range 0 < ßA < 1 *{p, as shown below. 
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The origin of this jump can be explained in the following way. Differentiating u in 

Eqn. (18) with respect to a yields the expression 

9u(0,A,t) 
3c 

^Qe"'03^ ( 

271 kA sinhc + po*(cosha -1) 
(25) 

The quantity in the denominator of the last term near a = 0 becomes 

sinha + pa[cosho-l]   ~   |(l+a2(l+3p)/6) (26) 

For a prescribed value of p, it is possible to let c -> 0 so that the first term (a/2) 

becomes dominant and consequently the integral exhibits a logarithmic singularity. 

However, for sufficiently large values of p, the second term soon dominates, such 

that the dominant term after integration is <r2; the argument of this term is rc/2. 

This occurs when the magnitude of a2 p becomes large compared with unity, or 

equivalent^, when ßA » Vp- Indeed, this is the phase lag obtained for large values 

of p near ßA = 0. 

Inserting Eqn. (26) into the denominator of Eqn. (25) and integrating gives 

Qe"10*     ' 
^M - ^T h 

27tkA 

The resulting phase lag is 

1+ 
(l + 3p)o2 

(27) 

2arctanjil (28a 
d>   ~   arctan \-—r. T\^ Y '^n(l + ^z) 

where 
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„   = 
3  (28b) 

* (ßA)2(l + 3p) 

The low frequency approximation (Eqn. 28) is shown on Fig. 4 by the dotted lines. It 

is accurate in the domain ßA < 0.1. 

3.        EXPERIMENTS 

3.1      Thermal Diffusivity 

The utility of the phase lag technique in determining thermal diffusivity was 

evaluated using a stainless steel alloy with known thermal properties # (Table I). 

The experiments were performed using the apparatus shown schematically in Fig. 5. 

The apparatus consists of a 0.5 W diode laser, mounted on a precision x-y-z 

translation stage with a precision of -10 \im, and modulated with a lock-in 

amplifier.  The measurements were made on a steel disk with a 34 mm diameter 

and 2.5 mm thickness. A type T thermocouple was affixed to the surface at the center 

of the disk using epoxy. The same surface was coated subsequently with a thin layer 

of carbon in order to reduce its reflectivity. The phase lag at the thermocouple 

location was obtained by comparing the laser input signal with the thermocouple 

signal using the lock-in amplifier. Phase lag measurements were made at 

frequencies ranging from -0.05 - 2.6 Hz, and at three distances from the 

thermocouple location: 1.5, 2.0 and 2.5 mm. 

To increase the absorption of the incident laser beam, the samples were coated 

with a sputtered carbon layer that was less than 0.1 urn in thickness. Assuming that 

the carbon layer is amorphous, a conservative lower-limit estimate for the thermal 

# Obtained from the NIST Standard Reference Materials Program. 
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diffusivity is on the order of 10"6 m2/s. Hence, the upper limit for the phase 

difference due to the bulk of the carbon layer is about 0.2 mrad at a frequency of 1 Hz. 

This is negligible compared to the phase difference measured for the bulk samples. 

The interface between the carbon layer and the underlying sample could also pose a 

thermal resistance. However, since the interface is chemically bonded, it is expected 

that this resistance would be much lower than that of the bulk sample studied in 

this paper. 

The experimental results are plotted in Fig. 6. They are presented in the form 

of phase lag differences, A<)>, obtained at two locations, separated by a distance Ar. 

(The use of the phase lag at only one location leads to a small systematic error 

because of the thermal resistance of the thermocouple/steel contact. This effect is 

eliminated when calculating the difference between two phase lag measurements at 

the same frequency.) Also shown on the figure are the computed curves, using the 

analysis presented in Section 2.3 and the reported thermal diffusivity of the alloy 

(a = 3.8xl0"6 m2/s). Excellent correlations are obtained between the calculated curves 

and the experimental measurements. 

3.2      Thermal Conductance of Interfaces 

The effects of interfaces were studied using a series of model systems 

comprising two circular stainless steel disks, each ground and polished to a final 

thickness of 1.25 mm. The disks were polished to produce a unidirectional lay and 

the surface roughness measured orthogonal to the polishing direction using a Sloan 

Dektak II profilometer. The RMS value of the surface roughness was determined to 

be 0.42 p.m. 

Various types of "interfaces" were produced between the two disks. The first 

was obtained by simply clamping together the disks with two binder clips, with the 

polishing directions of the two surfaces oriented perpendicular to one another. The 
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force associated with the clips was measured to be * 50N and the calculated average 

pressure was 0.015 MPa. The top surface was coated with a thin layer of carbon and a 

thermocouple subsequently attached to the bottom surface. The laser was focused on 

the top surface, directly above the thermocouple. Phase lag measurements were 

made over the frequency range 0.05 to 1 Hz. For comparison, a parallel series of 

measurements at the same frequencies was made on the pristine sample with the 

same total thickness (2.5 mm). The differences in phase lags in the two specimens at 

each frequency were used to determine the interface conductance. In order to change 

the interface conductance, thin sheets of a commercial linear low density 

polyethylene (LLDPE), -13 urn thick, were placed between the steel disks, the disks 

clamped together and the phase lag measurements repeated. Specimens containing 

1, 2 and 4 polyethylene sheets were characterized. 

Figure 7(a) shows the variation in the phase lag, Afc, associated solely with 

the interface, along with the calculated curves that give the best fit to the data*. The 

trends in the calculated phase lag with frequency for a fixed interface conductance 

closely follow the ones obtained experimentally. This self-consistency provides 

confidence in both the theoretical results and the measurement technique. The 

variation in the effective interface resistance, 1/h, with the number of polyethylene 

sheets is plotted in Fig. 7(b). The trend is linear (with the exception of the point at 

n = 0, corresponding to the contact between the two steel disks), and can be 

rationalized in the following way. 

The effective thermal resistance of the interfacial region in the presence of the 

polyethylene sheets can be partitioned into three components: 

* The assumed interface condition in Eqn. 4 neglects the thermal mass of the interfacial region. Strictly, 
this condition is not satisfied for the cases in which the polyethylene sheets are inserted between the 
stainless steel disks, because of their finite thermal mass. An analysis that incorporates this effect is 
presented in the Appendix. It demonstrates that, for the present system, the phase lag is altered by 
< 3% when the finite thermal mass is taken into account. 
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I   =   -2-   +   HZ!   +   Ül (29) 
h hp/s hp/p kp 

where n is the number of sheets. The first term represents the resistance associated 

with the two interfaces between the polyethylene and the stainless steel, each with a 

conductance hp/s; the second is the resistance of the polyethylene/polyethylene 

interfaces, with each interface having a conductance hp/p; and the third is the 

resistance of the polyethylene itself, with tp being the thickness of one sheet and kp 

the thermal conductivity of the polyethylene. For the purpose of comparing this 

model with the data in Fig. 7(b), Eqn. 29 is re-written as 

h hp/s    hp/p 
+   n 

kp    hp/p 
(30) 

The resistance is predicted to increase linearly with n, which agrees well with the 

measured trend. Upon performing a linear regression analysis of the data and using 

the reported value for kp (Table I) along with Eqn. 30, the relevant conductances 

were determined to be hp/p = 3.0xl04 W/m2 K and hp/s = 2-lxlO4 W/m2 K. By 

comparison, the measured conductance of the steel/steel interface is hs/s = l.lxlO4 

W/m2 K. 

The ranking of the three conductance values can be rationalized on the basis 

of surface roughnesses and the elastic/plastic properties of the constituent phases. 

Notably, because of the roughness of the stainless steel disks and the high modulus 

and strength of the steel, the interface conductance hs/s is expected to be the lowest 

of the three. The polyethylene has extremely low modulus and yield stress and will 

readily deform locally upon contact with the steel, yielding a more conductive 

interface (hp/s > hs/s)- Indeed, the measured values yield a ratio hp/s/hs/s = 2. 
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Moreover, because of the smooth surfaces of the polyethylene sheets, the thermal 

contact between the polyethylene sheets is expected to be better yet. This, too, is in 

agreement with the experiments (hp/p/hp/s = 1.5). 

At the most rudimentary level, the absolute value of the conductance of the 

steel/steel contact can be rationalized on the basis of the surface roughness, 

assuming that heat flow occurs by conduction through the air gap between the two 

surfaces. (The latter assumption can be justified on the basis of the very low 

pressures used in clamping the two disks together and thus the low area fraction of 

contacting asperities.) Thus the interface conductance is predicted to be 

h = ka/5 (3D 

where ka is the thermal conductivity of air at ambient temperature (0.024 W/mK) 

and 8 is the RMS separation between the two surfaces. Taking this separation to be 

approximately twice the RMS roughness of one of the two surfaces, the resulting 

predicted conductance is hs/s« 2.9x104 W/m2 K, which is of the same order as the 

measured value of 1.1x10* W/m2 K. 

4.        CONCLUDING REMARKS 

The present technique of periodic heating and phase lag measurement 

provides a relatively simple and quick determination of both the thermal diffusivity 

of solids and the thermal conductance of cracks and interfaces. The phase lag 

measurements used for thermal diffusivity determination are most readily 

interpreted when both the penetration depth of the thermal wave (the inverse of 

the wave number, ß) and the distance between the thermocouple and the heating 

source are small compared to the dimensions of the specimen (e.g. thickness). In 
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this limit, the phase lag is related to the thermal diffusivity through a simple 

quadratic equation. For other cases, solutions can be obtained for the phase lag in 

terms of the specimen geometry, the modulation frequency and the thermal 

diffusivity of the material, by solving the heat flow equations subject to the 

appropriate boundary conditions. Analogous solutions can be obtained for test 

specimens or structures containing interfaces or cracks, thus providing quantitative 

information about the thermal conductance of the defects. It is expected that the 

analysis could be extended to evaluate the thermal diffusivity of the constituent 

phases in multilayered systems. 
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APPENDIX 

Effect of the Thermal Mass of the Interphase on the Phase Lag 

The analysis presented in Section 2 is based on the assumption that the 

interfacial region (or interphase) has no thermal mass. This leads to the two 

interface conditions given by Eqn. (4); notably, the heat flux just above the interface 

is equivalent to that just below it, and that the temperature drop across the interface 

is (k/h) du/dz. In the model experiments involving the polyethylene sheets, the 

interphase has a finite thermal mass and the interface conditions of Eqn. (4) are not 

strictly valid. However, as demonstrated below, the magnitude of the error that is 

introduced in neglecting the thermal mass of the interphase is small for the range of 

frequencies used in making the present measurements. 

The effects of the thermal mass of the interphase on the phase lag across the 

specimen have been addressed by performing a one-dimensional heat flow analysis 

of the sandwich specimens, treating the interphase as a finite layer that is in 

intimate contact with the surrounding matrix slabs. The geometry is shown in 

Fig. Al. The thickness of the interphase is L and each of the matrix slabs is of 

thickness, B. Heat flow is in the z-direction. The relevant thermal properties of the 

two phases are the volumetric specific heat, c, the thermal conductivity, k, and the 

thermal diffusivity, a. (Naturally, only two of these three are independent.) The 

properties of the interphase are denoted with a subscript i and those of the matrix 

with a subscript m. 

Following a straightforward procedure, the Laplace-transformed temperatures 

on the bottom and top surfaces, uB and uT, and their derivatives, fß = duB/dz and 

fr = du-r/dz, are found to be related through a matrix equation of the form 
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JB. 

"Mu   M12" 

M2i    M22_ 

uT 

A. 
(Al) 

The determinant of the matrix M is unity and the only element required for 

determining the phase lag is 

M22 = cosh(qA) cosh(2pKqA) + 
V 2K J 

sinh(qA)sinh(2pKqA) (A2) 

where A = 2B, q = V-"*>/« / P = kmL/2A Iq and K = Vciki/cmkm . The parameter K 

represents the normalized thermal mass of the interphase. If the bottom surface is 

insulated, then 

fB = M2i uT + M22 h ~ ° (A3) 

Substituting this result into Eqn. Al and using the fact that the determinant of M is 

unity yields a simple relationship between the two temperatures: 

uB/uT   =   1/M 22 
(A4) 

The phase lag of the thermal wave at the bottom with respect to the heat input at 

the top is then the argument of the complex quantity 1/M22- 

If the thermal mass of the interphase is negligibly small (K-> 0), Eqn. (A2) 

reduces to 

M22   =   cosh(qA) + pqAsinh(qA) (A5) 
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This result corresponds exactly with the interface condition in Eqn. (4). 

The phase lag associated with the polyethylene sheets sandwiched between 

the stainless steel plates has been calculated using the material properties in Table I 

and the results plotted on Fig. A2. Comparisons are made between the computed 

phase lag taking into account the thermal mass (through Eqn. (A2)) and that which 

is obtained when the thermal mass is neglected (Eqn. (A5)). The results are plotted 

only over the frequency ranges that were used in the experiments. Over these 

ranges, the effects of thermal mass are small, resulting in no more than an ~ 3% 

increase in the phase lag. The effects would be more pronounced if either the layer 

thickness or frequency was greater. 
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Table I Thermal Properties of the Stainless Steel and the LLDPE 

Material 

Stainless Steel 

LLDPE 

Volumetric Heat 
Capacity, 

c (J/m3 K) 

3.8xl06 [26,28] 

2.1x10*127] 

Thermal 
Conductivity, 

k (W/mK) 

14.3 [26] 

0.33 [27] 

Thermal 
Diffusivity, 

a (m2/s) 

3.8X10-6* 

1.6x10-7* 

* Calculated from the other data, using a = k/c. 
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FIGURE CAPTIONS 

Figure 1      Optical micrograph showing a delamination crack in a unidirectional 

Nicalon-reinforced magnesium aluminosilicate (MAS) matrix. The crack 

was produced by loading an edge-notched beam in 4-point flexure. 

Figure 2     A schematic of the specimen geometry. 

Figure 3     Phase lag measured on (a) the top surface and (b) the bottom surface of a 

plate, heated at a point on the top surface. Also shown in (a) are the 

solutions for a line source, situated along the z-axis, as well as the 

asymptotic limit of the line source for large values of ßr. 

Figure 4     Influence of the interface conductance, characterized by the parameter p, 

on the phase lag measured across the plate at r = 0. The dashed lines at 

low values of ßA are given by the approximate solutions in Eqn. (28). 

The dotted lines at high values of ßA are the approximation of Eqn. (22). 

The solid lines are the exact numerical results. 

Figure 5     Schematic of the experimental technique. 

Figure 6     Determination of the thermal diffusivity of the stainless steel, using 
measurements of phase lag difference obtained from 2 locations (either 1 

and 2 or 1 and 3), along with the analysis presented in Section 2.3 

Figure 7     Experimental data and calculated curves for the phase lags obtained on 

the stainless steel sandwich specimens, showing the effects of the 

polyethylene sheets on (a) the phase lag, A<j>i, associated with the interface 

itself, and (b) the interface conductance. The solid line in (b) is a least 

squares fit of the data for n = 1,2 and 4. 

Figure Al  Schematic of the geometry used to assess the effects of the thermal mass 

of the interphase on the phase lag. 

Figure A2 Variation in the predicted phase lag associated with the polyethylene 
sheets sandwiched between the stainless steel disks. The dashed lines are 
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the predictions that take into account the finite thermal mass (through 
Eqn. (A2)) whereas the solid ones are based on the model that neglects 

this effect (Eqn. (A5)). 
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Determination of fibre strength distributions 
from bundle tests using optical 

luminescence spectroscopy 

BY J. HE AND D. R. CLARKE 

Materials Department, College of Engineering, University of California, 
Santa Barbara, CA 93106-5050, USA 

The tensile strength distribution of fibres is a key constitutive property of fibre re- 
inforced composites and is often described using Weibull statistics. However, the 
standard experimental methods used for obtaining the Weibull parameters are te- 
dious and prone to error. In this paper, Weibull parameters of polycrystalline o-Al203 

fibres (Nextel 610) are determined from piezospectroscopic measurements using pho- 
tostimulated Cr3+ luminescence (fluorescence) during fibre bundle tests. The fibre 
bundle stress, the stress on the surviving fibres and the survival probability can all 
be obtained by deconvolution of the luminescence spectra. Furthermore, a qualita- 
tive method is developed to assess whether the fibres in a bundle are aligned by 
monitoring the broadening of luminescence linewidth as a function of the applied 
load. The tensile strength distributions of Nextel 610 fibres are evaluated in the as- 
received condition and following heat treatments at 1000, 1200 and 1300 °C in air. 
The strength of fibres extracted from an Al-0.8% Mg alloy matrix composite are also 
characterized. The results show a significant strength degradation after heat treat- 
ment above 1000 °C with a broadening of the fibre strength distribution. The test of 
the extracted fibres also indicates no degradation in fibre strength during processing 
of a metal matrix composite (MMC) at 780 °C. 

1. Introduction 

Most of the thermomechanical properties, such as strength, creep and fatigue, of 
fibre reinforced metal and ceramic matrix composites are profoundly affected by the 
strength distribution of the constituent fibres (Kelly & Macmillan 1986; Curtin 1991; 
He et al. 1993). The strength properties of fibres are generally statistical in nature 
and are usually obtained by either of two experimental procedures. The first, the 
single fibre test in which, ideally, hundreds of individual fibres are tested, is tedious, 
requires considerable care and is prone to error due to damage when handling the 
individual fibres for testing especially small diameter fibres. The second method is 
the fibre bundle test (Chi et al. 1984; Phani 1988), which minimizes the amount of 
handling and damage. 

The testing of fibre bundles has increased in popularity in recent years, since the 
process is much more convenient and the results are believed to be more pertinent 
to the actual strengths exhibited by fibres in a finished fibre-reinforced composite. 
However, good alignment of the fibres in the bundle is essential in order to accurately 
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Table 1. Reported properties of Nextel 610 alumina fibres 

property value 

composition > 99% A1203 

elastic modulus (GPa) 380-400 
average thermal expansion 7 x 10-6 

coefficient (20-500 °c) re-1) 
density (g cm-3) 3.90-3.96 
filaments per tow 360-420 
diameter (^m) 10-12 
grain size (nm) 60 

determine the fibre strength distribution from bundle tests. In fact, a technique to 
evaluate whether the fibres are aligned within a bundle has yet to be developed. There 
is also almost always some variation in the actual number of fibres in a fibre tow, but 
generally more importantly is the fact that some fibres are damaged and fractured 
during shipping and handling. As a result, the actual number of load-carrying fibres 
in a bundle test is generally unknown and usually overestimated, which usually leads 
to an underestimate of the fibre bundle strength. 

In this contribution we use a piezospectroscopic technique, based on the photostim- 
ulated luminescence (fluorescence) from trace Cr3+ impurities in CV-AI2O3 (Grabner 
1978; Ma & Clarke 1993), to determine the strength distribution of alumina fibres 
during the fibre bundle test. The piezospectroscopic technique has been developed in 
the last few years as a non-intrusive measurement of stresses and strains in alumina- 
containing materials and structures (Ma Sz Clarke 1993; Sergo et al. 1995; Lipkin 
&: Clarke 1996). We show that piezospectroscopic measurements performed during 
fibre bundle tests provides a convenient and reliable method for the rapid acquisi- 
tion of statistical data of fibre strength distributions. Although the work described 
utilizes Cr3+ luminescence piezospectroscopy and is applied to alumina fibres, the 
same methodology is applicable to other fibres using other spectroscopic techniques, 
such as Raman spectroscopy and x-ray diffraction. 

Using the piezospectroscopic methodology described in the first part of this pa- 
per, a systematic study of the room temperature tensile strength distribution of 
Nextel 610 polycrystalline a-A1203 fibres (3M Corporation, St. Paul, MN) is de- 
scribed in the second part. Nextel 610 fibres have several unique properties (shown 
in table 1) which make them useful for reinforcement of metal and ceramic matrix 
composites, including high strength, high elastic modulus and excellent chemical and 
oxidative stability (Deve & McCullough 1995; McCullough et al. 1994). The fibres 
are tested in the form of a size-coated continuous tow in its as-received condition and 
after exposure to air at 1000, 1200 and 1300 °C for various times. The strength of 
fibres extracted from an Al alloy matrix composite are also characterized to establish 
the extent of fibre degradation during composite consolidation. 

2. Theoretical background 

(a)   Weibull statistics of a fibre bundle 
The strength distribution of brittle ceramic fibres is generally described using 

weakest-link statistics. In the present work it is assumed that the distribution of single 
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Ps(a) = exp (2.1) 

fibre strength under tension follows the two-parameter Weibull function (Weibull 
1951) 

Vo W 
where Ps is the probability of survival of single fibres of volume V up to a stress a, 
VQ is a reference volume, cr0 is the reference strength and m is the Weibull modulus. 
If the diameter, D, of all fibres is assumed to be the same, then equation (2.1) can 
be written as 

LQ \croJ 
Here, L is the fibre gauge length and L0 is the reference length. Note that equa- 
tion (2.2) can also be related to the applied strain e via Hooke's law, a — Es. 

For a perfectly aligned elastic fibre bundle, initially consisting of N0 fibres, the 
number of surviving fibres after an uniformly applied strain e is 

L 

Ps(a) = exp (2.2) 

Ns(£) = N0exp u (2.3) 

This expression can be related to the applied tensile load on the fibre bundle as a 
whole by 

F{e) = AN0Eeexip   - — (- )     . (2.4) 
L0  \£oJ     . 

This expression represents the load-strain relationship for a bundle of fibres under 
tension, where A is the average cross-sectional area of a single fibre and E is the 
Young's modulus of the fibre. If the applied stress on the bundle, the bundle stress, 
<TB, is defined as 

F(e) 
0"B 

ANQ' 
(2.5) 

then equation (2.4) can be rewritten as a relation between the bundle stress, crB, and 
the stress on the surviving fibres, 

a-Q — a exp 
LQ V°"O 

(2.6) 

This equation forms the basis for the work described in this paper since the piezospec- 
troscopic technique provides a direct measurement of the stress in the bundle and, 
by fitting the data obtained, equation (2.6) can be solved to determine the Weibull 
parameters <7o and m. 

(b) The piezospectroscopic effect and its application to fibre tests 

Alumina fibres, in common with many other alumina ceramics, contain trace lev- 
els of Cr3+ ions. These ions are known to substitute for Al3+ ions in the corundum 
structure of alpha-alumina. When photostimulated, the d3 electrons are excited to a 
higher energy and, in relaxing back to their ground state, emit characteristic photons. 
The two strongest emission lines, the Rl and R2 lines, are at frequencies of 14403 
and 14433 cm-1, respectively (figure la). (This photoluminescence is the basis for 
the three-level ruby laser.) When the alumina crystal lattice is deformed elastically, 
the frequencies of the Rl and R2 lines shift, a phenomenon known as the piezospec- 
troscopic effect. The change in frequency, Av, of the fluorescence spectra can be 
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Figure 1. (a) R line luminescence from polycrystalline alumina fibres (Nextel 610). (b) Schematic 
arrangement for the piezospectroscopic measurement of the stresses in fibres. The size of the 
illuminated region, and hence the number of fibres included, depends on the size of the optical 
probe which can be varied by the choice of the objectve lens and the collection optics. 

related to the strain state, but for many applications, including that discussed in 
this work, it is more convenient to relate it to stress. In the stress state formulism, 
the frequency shift is given by the tensorial equation (Grabner 1978; He & Clarke 
1995) 

Av Hij^ij + Aijki(T* r*kl + ... (2.7) 

where H^ and A^i are the first- and second-order piezospectroscopic coefficients 
and alj is the stress state defined in the crystallographic basis of the host alumina 
lattice. The full piezospectroscopic tensor, 77;J, has been accurately determined for 
the R line fluorescence (He & Clarke 1995). Although the results verify the existence 
of second-order piezospectroscopic coefficients, Aijki, the piezospectroscopic relation 
for R2 line is essentially linear and the off-diagonal terms of tensor 77,., for Rl and 
R2 lines are negligible compared with the principal terms. 

For polycrystalline alumina, such as the Nextel 610 fibres, a knowledge of the 
crystallographic orientations of each individual grain is required for the full evaluation 
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Figure 1. (c) R line luminescence collected during a fibre bundle test. The spectrum (shown by 
the solid line) consists of the luminescence signal from failed fibres, which are not under stress, 
as well as from the surviving fibres. Deconvolution of the two signals gives both the failure and 
survival probabilties. 

of equation (2.7). However, although it has been demonstrated that the optical axis of 
an a-Al203 crystal can be determined from the intensity ratio of Rl to R2 lines (He 
& Clarke 1997), the optical probes used in the work described here are much larger 
than the grain size (ca. 60 nm) of the fibres investigated. Under such conditions, 
and in the absence of any crystallographic texture, the mean frequency shift of a 
fluorescence spectra can be determined by averaging equation (2.7) over all possible 
crystallographic orientations. The resulting frequency shift is found to only depend 
on the trace of the applied stress tensor averaged over the volume probed (Ma k 
Clarke 1993) and is given by the relationf 

Ä^=±i7^, (2.8) 

where the value of the trace of the piezospectroscopic tensor nü for the R2 line 
is 7.61 cm-1 GPa-1 (He k Clarke 1995). (This result is correct even for crystal 
structures having non-zero off-diagonal terms in their piezospectroscopic coefficient 
tensor (He 1996).) As a result, the frequency shift of the R2 line is proportional to 
the trace of the stress tensor and is used in this work. 

This piezospectroscopic relationship forms the basis of the fibre bundle test shown 
schematically in figure lb in which a bundle of fibres is strained by the application of 
a tensile load and the photostimulated R line luminescence recorded as a function of 
applied load. Since the luminescence from every Cr3+ ion in the fibres is indepedent, 
the luminescence spectra contains information, through the piezospectroscopic shift, 
about the stress in each individual fibre. So, provided the luminescence is simul- 
taneously collected from a statistically significant number of fibres, analysis of the 
spectrum can yield information about the fibre strength distribution as described in 
the following. 

f The relation was derived by Q. Ma without considering the polarization effects of the fluorescence 
spectra. Our recent study (He &: Clarke 1997) on the R lines polarization indicates that its effect on 
equation (2.7) can be neglected in the case of Cr3+ fluorescence from polycrystalline A12Ü3- 
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In addition to the relation between the mean frequency shift and the average stress, 
another general relationship can be established, namely that between the shape of 
the luminescence line and the variations in stress within the volume of material 
from which the luminescence is collected. (This volume is henceforth denoted the 
probe volume for brevity.) The material under different stresses within the probe 
will luminesce at different frequencies and cause an apparent peak broadening of the 
overall spectrum. As a result, the peak broadening is generally proportional to the 
variation in stress within the probe volume. The general treatment relating spectral 
shapes to the spatial property distribution has recently been presented by Lipkin 
k, Clarke (1995). The effect of an arbitary stress distribution can be related to the 
measured peak shape by assuming that the probability of causing a frequency shift, 
Av, can be expressed as a weighting function W(Au). Then the average peak shift is 

Äü= f AuW(Au)dAu. (2.9) 

The broadening, defined as the difference between the widths of the peak from the 
stressed regions and from the stress free regions, is then 

J f(Av)2W(Av) y/{Av2) = J    (Av)2W(Av) d(Ai/) - (A^)2. (2.10) 

These relationships assume a continuous distribution in the stress variations. How- 
ever, there are important instances, pertinent to the fibre bundle test in which the 
stress contributions from one or two regions are disproportionately large. One such 
example considered in the following occurs when a fibre bundle is under stress but 
contains a number of broken fibres. 

The broadening expressed by equation (2.10) is that caused by spatial variations 
in stress, an extrinsic effect. This is additional to the relatively small intrinsic broad- 
ening, in fact a decrease in broadening, of about 0.4 cm-1 GPa-1, that occurs on 
loading under constant stress. (A similiar decrease in broadening is observed with 
single crystal ruby in high-pressure diamond anvil cells.) 

(c) Peak shifts and broadening for a perfectly aligned fibre bundle 
In the case of a perfectly aligned fibre bundle under load, the fibres can be either 

intact, in which case they sustain a fixed strain, or they are broken, in which case 
they are stress free. As a result there are only two values of the weighting function 
W{Av). If expressed in terms of the fibre stress, a = Ee, and assuming a Weibull 
distribution, the weighting functions are then 

L. (fL 

Prom equations (2.9) and (2.11), the average shift from a fibre bundle is then 

W{a) = Ps(a) = exp and    W(0) = 1 - Ps(<r). (2.11) 

Av = \ Tina exp -c-r l nuaB. (2.12) 

This equation provides the theoretical basis for determining the fibre bundle stress 
from the luminescence measurements. 

Furthermore, from equations (2.10)-(2.12), the peak broadening can be expressed 
as a function of the stress on the surviving fibres 

y/iÄv2) = ^nüay/Ps(<7)Pf(<T), (2.13) 
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where Ps{o~) is the survival probability defined in equation (2.1) and P{{a) = l—Ps(o~) 
is the failure probability. It should be pointed out that the broadening behaviour is 
analysed by assuming the increase in linewidth is solely due to the stress variations 
within the probed volume. In consequence, the small peak narrowing of the lumines- 
cence from polycrystalline AI2O3 under uniform tensile stress has been neglected. 

(d) Determination of the survival probability 

As discussed in the previous section, for a well aligned fibre bundle there are only 
two distinct stress values in the bundle after the failure of weakest fibres. Therefore, 
the broadening is not symmetric and the spectrum consists of two superimposed 
spectra, shown schematically in figure lc, one from the stressed fibres and one from 
the failed fibres. Because the failed fibres do not bear any of the applied load, the 
peak frequency and linewidth are the same as for a stress-free fibre. Additionally, as 
mentioned above, the linewidth of the spectra from the surviving fibres is a function 
of tensile stress on the fibres (—0.4 cm-1 GPa-1). The only unknown variables in 
analysing the spectrum are the frequency shift from the surviving fibres and the 
relative intensity of the two spectra. As a result, the frequency shifts of the spectra 
from the surviving fibres and hence their tensile stress can be deconvoluted by fitting 
the collected fluorescence spectra to a combination of two sets of R line spectra, one 
from failed fibres and the other from surviving fibres. The survival probability, Ps(c)> 
can then be directly determined from the ratio of the area under the surviving fibre 
spectrum to that of the overall spectrum. 

(e) Assessing fibre alignment 

If the fibres in the bundle are not all aligned, then in a constant load or displace- 
ment test, the strain in each fibre will not be identical. As a result, the luminescence 
broadening will not decrease with applied stress at 0.4 cm-1 GPa-1 as is the case 
for a single fibre under tension, but rather increase as indicated by equation (2.10). 
In general, the degree of misalignment will not be known a priori. However, from a 
practical point of view, it is probably important only to know whether the fibres in a 
selected bundle are aligned or not. In a bundle of misaligned fibres, as individual fi- 
bres begin to fail, the broadening is expected to increase with applied load more than 
that predicted by equation (2.13). Thus, the luminescence broadening as a function 
of applied stress provides a direct means of assessing whether the fibres in a bundle 
are aligned. 

(/) Fibre diameter variation 

In the fibre bundle experiments described in this work, a variation in diameter of 
the fibres within a bundle does not cause any luminescence broadening since the me- 
chanical testing is performed under constant displacement conditions. Variations in 
fibre diameter do, however, lead to a variation in the tested volume, V, of individual 
fibres within a constant gauge length (equation (2.1)). This, in turn, alters the sur- 
vival probability from that expected for a bundle of fibres having the same diameter. 
The quantitative effect of variations in fibre diameter on the survival probability can 
be determined as follows. 

For cylindrical fibres having diameters D, equation (2.1) can be rewritten as 

rw N r     L D2 {e 
Ps(£)=exp^__^_ 
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Assuming a Gaussian distribution in fibre diameter. 

PN{D) = 
2*6 

exp (D ~ Do) 
262 

21 
(2.15) 

then the overall survival probability of a fibre bundle up to a strain, s, is 

Ps(e) 
r+oc 

JO 

1 

2TT<5 
exp (D-Dof 

2<52 exp 
L_LP_ 

dD,        (2.16) 

where D0 is the average fibre diameter and standard deviation of 6. 
The survival probability Ps (s) can then be expressed analytically in terms of the 

coefficient of variation, K, of the fibre diameter and the Weibull parameters 

/ 

Ps(e) = | 1+erf 

\ 

exp 

L_ 

'L0 $ 

_\KJ        L0 

(2.17) 

where erf [z] is the error function and 

K = 6/DQ. (2.18) 

Based on equation (2.17), the effect of diameter variation on the fibre bundle 
behaviour is proportional to the magnitude of K. Such effect is negligible for fibres 
with K value being smaller than 20%. In the case of Nextel 610 fibres, the value of 
K is around 5-6%. Therefore, the diameter of fibres in the bundle can be considered 
to be uniform, as is done in the following analysis. 

3. Experimental procedure and analysis 

(a) Sample preparation and heat treatments 

A Nextel 610 fibre tow treated with a polyvinylalcohol (PVA) sizing was supplied 
by 3M Corporation (lot number A0078-0113). The mean fibre diameter and the 
number, iVtow, of fibres in the tow were found from electron micrographs of sliced 
end views of aluminum-embedded samples. The mean fibre diameter was 12.1 ± 
0.7 ^m (average of 186 fibres). The number of fibres in the tow was found to be 
377 ± 6 by averaging over several cross sections at 2 m intervals along the tow. 
Piezospectroscopic measurements under unixial stress, described in the following 
section, were made on different portions of the tow. Some were performed on portions 
of the tow in its as-received condition whereas other portions were first heat treated 
in air. Four different heat treatments were conducted: 1000 °C for 1 h, 1200 °C for 
1 h, 1200 °C for 4 h and 1300 °C for 1 h, with heating and cooling rates being 5 
and 10 °C min-1, respectively. Following each heat treatment, a couple of drops of 
3-wt% polyvinylacetate-methanol solution were applied to each loose bundle for ease 
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Figure 2. Optical micrograph of a number of fibre tows extracted from a Al-0.8%Mg MMC. The 
test specimen was prepared by preferentially etching the centre section of the matrix away from 
a MMC sample using 49% HF. The black appearance is given by the carbon coating on the 
fibres. The white feature is a piece of polycrystalline AI2O3 providing the structural support 
during handling and was removed before the bundle test. The typical thickness of the bundles 
was 0.4 mm and, with the neck section of 2 mm in width, they usually consist of 15-20 fibre 
tows. 

of handling. As the alcohol solution evaporated and the epoxy hardened, the fibres in 
the bundle were pulled together by the increasing capillary force thereby self-aligned 
the fibres. Another advantage of the epoxy was that it also protected the A1203 fibres 
from any possible stress corrosion during the bundle tests, a phenomenon known to 
occur in moist air. 

The strength of the fibres inside the MMC was characterized by testing fibre 
bundles after they were extracted from an Al-0.8% Mg alloy matrix composite by 
etching. The particular MMC from which the fibres were extracted was made at 
UCSB by squeeze casting with a peak processing temperature of 780 °C for 1 h (Cao 
et al. 1992). The matrix at the centre portion of the standard tensile test samples 
(dog bone geometry) were preferentially etched away by 49% HF solution with the 
ends of samples protected by candle wax and Teflon tapes (shown in figure 2). The 
gauge length of the extracted fibre bundle at the centre was 0.5 inch. A typical bundle 
of extracted fibres had a cross-section of 0.4 x 2 mm2 and contained 15-20 fibre tows. 

(b) Piezospectroscopic measurements during fibre bundle tests 

The piezospectroscopic measurements were made using an optical microprobe con- 
sisting of an attached argon ion laser, operating at a wavelength of 514.5 nm, as an 
excitation source, and an attached spectrometer (Model T64000, Instruments SA, 
Edison, NJ). The laser beam was focused onto the fibres using the objective lens of 
the microscope and the same lens used to collect the luminescence. One of the ad- 
vantages of this configuration is that the probe volume can be changed conveniently 
by selecting the objective lens with different magnifying power and the size of the 
apertures. Although the system is capable of high spatial resolution mapping down 
to less than 1 |i,m, a large probe volume is desired in the case of fibre bundle tests 
so as to excite fluorescence from a large number of fibres simultaneously, a sufficient 
large number that the results of piezospectroscopic measurements will accurately 
reflect the statistical nature of the fibre strength distribution. 

As shown schematically by the configuration in figure 16, the optical path of the 
system is perpendicular to the fibre axes. A 4X/0.10 Nikon objective lens was used 
to collect the luminescence spectra. The probed volume was determined as follows. 
The transverse probe profile was determined by sweeping the probe across a fibre 
bundle from the edge to the interior and monitoring the increase in the R line lu- 
minescence intensity. The probe response function, B(x), was then deconvoluted by 
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Figure 3. The experimental data for the transverse probe profile using a 4X/0.10 Nikon lens 
used to both illuminate the fibre bundle and collect the stimulated luminescence. The R line 
luminescence intensity increases as the probe sweeps across the fibre bundle from the edge to 
the interior as shown. The probe response function B{x) is deconvoluted by differentiating the 
intensity profile with respect to the transverse position. 

differentiating the intensity profile with respect to centre position of the probe, as 
shown in figure 3. Here, for convenience, the probe diameter is defined as the FWHM 
(full width at half maximum) of the response function. In the case of the 3M fibre 
bundle, the probe diameter for 4X/0.10 lens was 190 \im at 5 mW of laser power at 
the laser. The longitudinal probe profile or the depth of field is difficult to determine 
accurately, primarily because of grain boundary scattering within the polycrystalline 
fibres. However, an estimate can be made by comparing the R line intensity from 
a fibre bundle with that collected from a polished metal matrix composite (MMC) 
reinforced with the same fibres. The polished surface of the MMC was arranged to 
be parallel with the fibre axes, so the luminescence signal only came from the layer of 
fibres exposed to the free surface. By using the same objective lens, the luminescence 
intensity from the fibre bundle was more than ten times as intense as that collected 
from the MMC sample. Therefore, we concluded that the probe penetrates, and the 
signal is collected from, at least ten layers of fibres below the surface. Combining 
these results of the transverse and longitudinal probe size, the probe formed by the 
4X/0.10 lens effectively collected luminescence from about 150 fibres, a number large 
enough to provide statistically significant data on the fibre strength distribution. 

(c) Mechanical tests of fibre bundles 

Tensile tests were conducted on a thread driven stainless steel test frame (shown 
in figure 4) that fits under the optical microprobe. The load was monitored using 
a 250 pound load cell. The ends of fibre bundles were attached to cardboard tabs, 
similar to those used in single filament tests, using an epoxy adhesive. To ensure 
good alignment, the bundle ends were placed into straight, shallow grooves that had 
been stamped along the centre line of the tabs. All fibre bundles were tested under 
1 inch gauge length and five tests were performed in each condition. The samples 
of extracted fibre bundles (0.5 inch gauge length) were tested by directly mounting 
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Figure 4. Optical micrograph of the stainless steel tensile test frame. The sample shown here is 
an extracted bundle of fibre tows as in figure 2. 

the sample ends on the crossheads of the tensile frame using super glue. Tensile 
testing under displacement controlled conditions was chosen since this method has 
the advantage that as fibres break, their load is not transferred to the remaining fibres 
causing them, in turn, to break. As a result, the system is more stable mechanically 
and single fibre fracture could be investigated over a larger strain range compared 
with tests using a constant crosshead speed. 

During the tests, a luminescence spectrum was collected with the fibres under 
constant tensile load with an integration time of typically 10 s. The displacement 
was increased incremently and a luminescence spectrum was collected at each load. 
In order to explore the whole distribution of the fibre strength, extreme care was 
taken to ensure that the displacement, and hence load, increments were sufficiently 
small around the peak load so that the fibre bundle would remain stable after the 
load began to drop. In most of the cases, the bundle did not break until the load 
decreased to less than half of the maximum attainable value. 

(d) Determination of the fibre bundle stress 
According to equation (2.12), the average frequency shift of the luminescence R line 

corresponds to the bundle stress defined in equation (2.5), provided the probe in- 
cludes a sufficient number of fibres. As a result, there should be a linear relation 
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Figure 5. A typical load-stress curve for Nextel 610 fibre bundle. Here the bundle stress is decon- 
volved from the average frequency shift using equation (2.8). The slope of the line corresponds 
to the overall cross-section of the initial load carrying fibres. Based on the average fibre diameter 
(12.06 (xm), the number of initial load carrying fibre is 339 in this particular case, about 90% of 
the 377 fibres in the tow. 

between mechanical load on the bundle and the value of stress deconvoluted from 
the piezospectroscopic measurements. This was indeed found and is shown by the 
linear slope of the load-stress curve plotted in figure 5. The slope is equal to the 
cross-section area of the bundle, AN0, thereby enabling the initial number of load 
carrying fibres, as well as the extent of damage due to shipping and handling, to be 
evaluated by comparison with the actual number of fibres, Ar

tow, in the tow. 

(e)  Peak broadening and fibre alignment 
To establish how the peak broadening changes with applied stress, the FWHM 

broadening of the R2 luminescence line was measured for both the as-received fibre 
tow as well as for a number of extracted fibre bundles from the dog-bone shaped 
sample. The data are shown in figures 6a,b. 

As indicated, there is no peak broadening at the initial stage of loading of the 
as-received fibre tow and the linewidth becomes somewhat narrower with increasing 
load. At higher loads, substantial peak broadening occurs and the FWHM reaches a 
maximum after passing the peak load on the fibre bundle. As the load drops further, 
the linewidth decreases again and approaches the stress-free state. This set of obser- 
vations is considered to be consistent with the expected behaviour of a well aligned 
fibre bundle under the tensile load. At first, there are no fibre failures under load, 
so the load is uniformly distributed through the whole bundle and consequentially 
the broadening should be the same as that of a single polycrystalline fibre under the 
same tensile stress. The decrease in the linewidth during the initial stage of bundle 
tests is similar to that observed from individual fibres under uniaxial tension where 
the value of FWHM of R lines decrease linearly as the tensile stress increases with the 
slope of —0.4 cm-1 GPa-1 (He 1996). With increasing load, some of the weaker fibres 
presumably fail. The broadening is then due to a superposition of the lines from the 
stressed, surviving fibres and the decreasing number of surviving fibres. As a result, 
the FWHM of the R lines will reach a maximum and then decrease to the stress-free 

Proc. R. Soc. Lond. A (1997) 

52 



Determination of fibre strength distributions from bundle tests 1893 

B 
ü 

-o 
'$ 
<u c 

D o e 
O 
«a 
U c 
S 

15.5 
(b) 

1   ■   ■   •   1 r ■ ■   ■   i 

15.0 - 
0 

- 

14.5 
D 

/ 
/               / / 

/ 
/ - 

14.0 

13.5 g      QA 

c >/ 

/              / 

^        

Of 

/ 

- 
&U -v-— ■ 

■ 

11 t\ ■     1 i    .    .     . 1 u. i   .   .   .   i 

0.2 0.4 0.6 0.8 1.2 

Fibre Bundle Stress, cD (GPa) 

Figure 6. The broadening of the R2 line as a function of the fibre bundle stress for the as-received 
fibre tow (o) and fibre bundles extracted from the composite (6). In (a) the loading sequence 
is indicated by the arrows along the loop. The superimposed loop represents the broadening 
behaviour predicted by equation (2.12). The different symbols in (b) correspond to the behaviour 
of spectra collected from different fibre bundles. 

value as the proportion of surviving fibres continues to diminish. Superimposed on 
the data of figure 6a is the broadening predicted using equation (2.13). Except for 
the discrepancy towards the end of the test, where notably far fewer fibres are under 
load, the prediction agrees reasonably well with the experimental observation. 

The data from the different extracted fibre tows exhibit similiar behaviour to 
that of the as-recieved tow except that the onset of extensive broadening varies 
substantially from one tow to another. This variation is attributed to the fact that 
the fibres in the extracted tows are not as well aligned as in the as-received condition 
due to the distortions produced during the squeeze casting of the composite. During 
casting, the pressure infiltration of the molten matrix into the fibre bundles can 
disrupt the arrangement of fibres and cause both substantial weaving and bending 
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Table 2. Weibull parameters of Nextel 610 fibres determined from piezospectroscopic 
measurements 

as-received 

heat treated 

parameter 
1000 °C 
for lh 

1200 °C         1200 °C 
for 1 h            for 4 h 

1300 °C 
for lh extracted 

(To (GPa) 
m 
CTB (GPa) 

2.58 ±0.14 
5.30 ± 0.50 
1.59 ± 0.06 

2.55 ±0.09 
4.20 ± 0.40 
1.40 ±0.08 

2.40 ± 0.03    1.75 ± 0.09 
2.90 ±0.70    6.50 ±0.40 
1.25 ±0.09    1.10 ±0.06 

90 ± 5% 

1.60 ±0.10 
6.10 ±0.90 
0.97 ±0.10 1.56±0.12a 

aAll values here are based on 1 inch gauge length. The strength for fibre bundles extracted from 
the MMC is calculated from results of 0.5 inch gauge length, assuming m = 5.3. 

within each fibre bundle. As a result, when a load is initially imposed on the bundle 
of extracted fibres, some of the fibres are not stretched and hence do not carry 
any load. Therefore, in most cases, there is a stress variation within the optical 
probe as soon as a load is applied, causing a peak broadening as shown in figure 66. 
However, there are some bundles in which the fibres are well aligned locally and the 
luminescence spectra collected from these behave similarly to the as-received fibre 
tow. The data obtained from one such bundle are indicated by the solid squares in 
figure 6b. The results of the extracted fibre bundle tests presented later are based on 
the luminescence spectra collected from these well aligned bundles. 

4. Results and discussion 

The strength distribution of the 3M Nextel 610 fibres obtained from the piezospec- 
troscopic measurements of fibre tows after various heat treatments are presented in 
figures 7 and 8, along with that of as-received tows. Figures la-e show the data of 
bundle stress versus stress on the surviving fibres for the as-received tows, fibres heat 
treated at 1000 °C for 1 h, 1200 °C for 1 and 4 h and 1300 °C for 1 h, respectively. 
Figures 8o-e show the corresponding survival probability, Ps(&), determined from 
the luminescence intensity ratio. An interesting feature of the data is that the initial 
value of survival probability Ps(0) is not 100%. but rather is usually between 85 
and 93%. This is due to the presence of a proportion of fibres that end within the 
gauge length of the bundle, presumably due to fibre damage introduced during man- 
ufacture, shipping and handling. This is consistent with the observation (figure 5) 
that the number of initial load carrying fibres, No, is always smaller than 377, the 
total number of fibres, iVtot, counted in the tow. Because of this lower number of 
load carrying fibres, equation (2.1) has to be normalized by the proportion of initial 
load-carrying fibres 

Ps(cr) = T^exp 
-»Hot Lo \croJ 

(4.1) 

The Weibull parameters are determined by fitting the data in figures 7 and 8 using 
two parameter Weibull statistics shown in equations (2.6) and (4.1). The results are 
summarized in table 2. 

In figure 9, the data of bundle stress versus stress on the surviving fibres from 
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Figure 7. Bundle stress versus fibre stress data for 3M Nextel 610 fibre tows, (a) As received and 
after heat treatments at: (b) 1000 °C for 1 h; (c) 1200 °C for 1 h; (d) 1200 °C for 4 h; (e) 1300 °C 
for 1 h. The fitted curves are based on the two parameter Weibull function in equation (2.5) 
with L = Lo = 1 inch. 

the extracted fibre bundles are shown. As discussed in the previous section, the 
test results are based on the luminescence spectra collected from those well-aligned 
portions. In contrast to the data from the as-received and heat-treated bundles, the 
data do not extend much beyound the peak stress. This was due to the relatively 
large number of the bundles of extracted fibres used and hence the high mechanical 
load on the jig during testing. (We did not wish to damage the extracted fibres 
by trying to separate them after etching away the alloy matrix and hence it was 
necessary to test several bundles simultaneously.) At the highest loads, the stainless 
steel loading frame was somewhat compliant with the result that as fibres broke, 
their load was transferred to the remaining fibres leading to catastrophic failure 
of the fibre bundle. As a result, we are unable to determine the Weibull modulus 
for the extracted fibres although the bundle strength itself is well characterized, as 
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Figure 8. The fibre survival probability obtained from the luminescence intensity ratio as a 
function of stress on the bundle. 

can be seen from the data in figure 10. Its value was 1.79 GPa at a 0.5 inch gauge 
length, which is similiar to the bundle strength of 1.59 GPa for as-received fibres 
at 1 inch gauge length (CTB (L = 0.5 inch) = 1.14crB (L = 1 inch) for m = 5.3). Thus, 
we conclude that the processing of MMC by squeeze casting at 780 °C does not cause 
significant degradation of the strength of Nextel 610 fibres. 

The room temperature bundle strength of Nextel 610 fibres after various heat 
treatments in air for 1 h are summarized in figure 10. The solid line through the data 
is a guide to the eye but its shape suggests that greater strength degradation occurs 
at higher temperatures. The results clearly show that there is no loss in strength after 
exposure to high temperature in air up to 900 °C. This agrees with the measurements 
on Nextel 610 fibres made by Das (1995) indicating no strength degradation for 
thermal exposure at 982 °C in air for 2000 h. Strength degradation, however, becomes 
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Figure 10. Fibre bundle strength at 1 inch gauge length as a function of the maximum heat 
treatment temperature for 1 h. The data at 780 CC are converted from the results of the extracted 
bundles with a guage length of 0.5 inch. 

significant for heat treatment temperatures exceeding ca. 900 °C and increases with 
temperature. Nevertheless, the bundle strength at room temperature after heating 
to 1300 °C is still more than 50% of that of the as-received fibres. 

It is interesting to compare our results on room temperature tensile strength with 
previous high temperature tensile strength study (Wilson et al. 1993) made on Nex- 
tel 610 fibres. Due to their relatively poor creep properties (Wilson et al. 1992), the 
high temperature tensile strength of 610 fibres falls precipitiously at 1300 °C. How- 
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Figure 11. SEM micrographs of (a) fracture surface of Nextel 610 fibres in MMC and (6) outer 
surface of fibres heat treated in air at 1200 °C for 4 h. 

ever, the thermal degradation on their room temperature tensile strength is mainly 
governed by the change in microstructure rather than the creep rate. 

Examination of the data (table 2) indicates that in addition to the strength degra- 
dation, the Weibull modulus decreases from 5.3 for the as-received fibres to 2.9 for 
fibres treated at 1200 °C for 1 h. This indicates that the strength distribution be- 
comes broader after the exposure to high temperature. However, the trend is reversed 
after annealing at high temperature (1300 °C ) or for a longer period (1200 °C for 
4h). As described below, these latter changes in the Weibull modulus are probably 
due to the bonding between touching fibres rather than the degradation of individual 
fibres. 

Degradation of a number of fibres as a result of high temperature annealing has 
been noted previously and it has been suggested that strength degradation can be 
due to microstructural changes such as grain coarsening and grain boundary grooving 
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Figure 12. Low magnification (a) and high magnification (b) SEM micrographs of surface 
defects on Nextel 610 fibres after heating in air at 1200 °C for 4 h. 

at the fibre surface. To determine whether the strength degradation we observe is 
due to microstructural changes we compared the microstructure of the surfaces of all 
the fibres. The surface of the as-received fibres was very smooth and we were unable 
to image individual grains or grain boundaries. In comparison, the surface of the 
fibres heat treated at 1200 °C for 4 h exhibited substantial grain boundary grooving. 
However, in comparing the grain size of the extracted fibres, which had been heated at 
780 °C for 1 h (figure 11a), with that of the fibres that had been heated at 1200 °C for 
4 h (figure 116), little grain growth is evident. These comparisons would suggest that 
grain boundary grooving was responsible for the strength degradation but would not 
account for the increase in Weibull modulus after 4 h at 1200 °C and 1 h at 1300 °C. 

The only difference in appearance between the fibres heated at 1200 °C for 4 h and 
at 1300 °C for 1 h, and those fibres heated at lower temperature and shorter times, 
were lines of defects running parallel to the fibre axes (figure 12a). Closer examina- 
tion (figure 126) reveals a much rougher surface morphology at these defects than 
elsewhere on the fibre surface. There is evidently some grain coarsening at these line 
defects and pores of comparable size with the pores and grains distributed irregularly 
along the lines of defects. Additionally, these line defects lie about 60° apart around 
the circumference of the fibres. Based on these observations, we believe that the 
line defects are the result of sintering between touching fibres at high temperature 
leading to the formation of necks along the line of fibre contact. When the fibres are 
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separated, the fracture of these necks cause some grains to be pulled out leaving be- 
hind large pores. Since these line defects are formed at the same temperature as the 
Weibull modulus increases, it suggests that the bonding between the fibres affects 
the bundle strength distribution. This would be consistent with a previous study 
by Hill & Okoroafor (1995) which showed that interfibre friction could substantially 
increase the Weibull modulus determined from bundle tests. Although the interfibre 
friction was expected to be greatly reduced in the current study by applying drops 
of sizing to the fibre bundle, the necks formed during high temperature treatment 
could nevertheless provide moderate friction between touching fibres, leading to the 
observed increase in Weibull modulus of fibres treated at 1200 °C for 4 h and 1300 °C 
for 1 h. 

5.  Summary 

A methodology for determining the strength distribution of polycrystalline alu- 
mina fibres from their luminescence spectra during mechanical stressing has been 
described. The measurements, based on the piezospectroscopic properties of alu- 
mina, sample a large number of fibres simultaneously and provides a convenient 
means of characterizing fibre strength. Both the bundle stress and the stress on the 
surviving fibres, as well as the survival probability, can be deconvoluted from optical 
luminescence spectra collected during fibre bundle tests. Furthermore, from the lu- 
minescence broadening during loading it is possible to assess whether the fibres are 
aligned with the loading direction, an essential prerequisite for an accurate bundle 
test. 

Using the piezospectroscopic methodology, the room temperature tensile strength 
of Nextel 610 fibres has been studied in their as-received condition as well as after 
various high temperature treatments in air. It is found that the strength is retained 
after heat treatment in air up to 900 °C. Then, the thermal degradation of fibre 
strength becomes more and more severe as the heat treatment temperature is in- 
creased. The strength distribution also becomes broader. Significant grain boundary 
grooving is observed after fibres are heated at high temperature and it is also be- 
lieved that necks start to form between touching fibres after prolonged treatment at 
1200 °C and exposure to 1300 °C. In contrast, the processing of MMC at low tem- 
perature (780°C) does not appear to cause significant strength degradation of the 
fibres. 

The authors thank Dr H. E. Deve and Dr D. M. Wilson at 3M Corporation for helpful discussions 
and supplying the fibres. This work was supported by the Advanced Research Projects Agency 
University Research Initiative at UCSB under contract N00014-92-J-1808. 
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Polarization Dependence of the Cr3+ R-Line Fluorescence from 
Sapphire and Its Application to Crystal Orientation and 

Piezospectroscopic Measurement 

Jun He* and David R. Clarke' 

Materials Department, College of Engineering, University of California, Santa Barbara, California   93106-5050 

The room-temperature polarization characteristics of the 
ruby R lines have been studied by monitoring the fluores- 
cence intensity as a function of excitation direction relative 
to the crystallographic axes of the ruby crystal. The R lines 
are strongly polarized in the basal plane but have no pre- 
ferred vibration direction within the basal plane. However, 
the degree of polarization, P, of the Rl and R2 lines is not 
the same, being PR1 = 87% and PR2 = 62%. The phenome- 
non is explained in terms of the absorption anisotropy and 
the probability of spontaneous emission. The findings pro- 
vide the basis for a high-spatial-resolution spectrophoto- 
metric method to determine the optical c-axis of chromium- 
doped A1203 crystals using the angular dependence of the 
intensity ratio of the R2 line to the Rl line. The application 
to the orientation determination of sapphire fibers embed- 
ded in composites and the corresponding residual stress 
components are discussed together with the possibility of 
measuring the texture in the A1203 polycrystalline thin films 
such as oxidation scales. Furthermore, the consequences of 
polarization orientation on piezospectroscopic measure- 
ments are discussed. 

I.   Introduction 

THE optical spectra of ruby (Cr3*-doped sapphire) have been 
studied extensively since the late 1950s and are generally 

considered to be well interpreted in terms of ligand field theory.'"5 

As a result, the polarization of ruby absorption is well under- 
stood. However, the polarization characteristics of its spontane- 
ous emission have not been detailed, apart from reports that the 
total emission is strongly polarized.6'7 

During the last five years, a high-spatial-resolution (~1 um) 
strain-mapping technique has been developed using the piezo- 
spectroscopic properties of ruby.8,9 By monitoring the fre- 
quency change of the Raman-line (R-line) fluorescence, a 
variety of residual stress problems, as well as the response to 
applied stresses, has been studied in Al203-containing mono- 
lithic and multiphase materials.10"12 As shown in Fig. 1, the two 
closely spaced R lines result from nonphonon radiative tran- 
sitions from its first excited state (2A and E doublet) to its 
ground state of the Cr3* ion (4A2). In addition to the precision in 
stress measurements, the technique facilitates a more complete 
determination of the stress tensor with a knowledge of the 
crystallographic orientation.13 Therefore, a technique to deter- 
mine the crystallographic orientations of A1203 materials with 
comparable spatial resolution is required. The X-ray resolution 
is limited by the beam size, usually on the order of 1 mm 
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unless microfocus facilities are available. One motivation of 
the present study is to develop a technique to determine the 
crystallographic orientation of small regions of A1203 by study- 
ing the polarization characteristics of their R-line fluorescence. 
Additionally, precise knowledge of the fluorescence polariza- 
tion is important in stress measurements in polycrystalline 
materials, in which the stress-induced line shifts are averaged 
over all possible crystallographic orientations and a weighting 
function resulting from the polarization dependence may need 
to be included. 

The anisotropic absorption properties have been commonly 
used to align optically uniaxial crystals with their optical axes, 
at least qualitatively. Although the emission process is more 
complex than that of the absorption, the ruby fluorescence 
should inherit the optically uniaxial properties from the corun- 
dum structure. In this work, a series of experiments were per- 
formed to study the polarization characteristics of R-line 
fluorescence. As a result, the intensity ratio (R2/R1) is deter- 
mined as a function of the angle between the optical c-axis of 
the crystal and the direction of the E vector of the incident light 
so that it can be used to measure the c-axis orientation in A1203 
quantitatively. After a brief description of the experimental 
procedures, the results obtained are presented in Section III. 
The theoretical interpretation described in Section IV, along 
with a comparison with previous literature data, is then fol- 
lowed by examples of application of this phenomenon. 

II.   Experimental Details 

(1)   Fluorescence Measurement 
We have used optical microscopy to stimulate and collect the 

excited fluorescence in the backscattering mode. The optics 
have been described in detail previously.13 An objective lens of 
10X magnifying power, with a numerical aperture of 0.3, was 
used in most of our work. Because of the nature of the holo- 
graphic gratings in the spectrometer, the collection efficiency is 
highly polarized, with the efficiency reaching a maximum when 
the E vector of the fluorescence is parallel to the opening 
direction of the entrance slit, and it reduces to zero when E is 
perpendicular to the slit opening. Therefore, the overall effect 
is equivalent to inserting a polarizer in front of the spectrometer. 
For descriptive purposes, the direction normal to the slit is 
referred to here as the collection direction, S, of the spectrome- 
ter. An argon-ion laser served as the excitation source, operating 
at 488.0 and 514.5 nm. Three thin plates of ruby were cut from 
a large, single crystal (0.05 wt% Cr3*) and machined to 5 mm X 
5 mm, with a thickness of ~1 mm. Both extended surfaces 
were polished to an optical finish. Using X-ray Laue back- 
reflection, the normals of the extended surface are aligned 
within ±0.5° with the crystallographic c-, a-, and m-axes, 
respectively. The collected Rl and R2 fluorescence lines were 
fitted to a double pseudo-Voigtian function, and the intensity of 
the individual line was quantified by the area under each peak. 
Through the course of the experiments, lenses with higher 
magnifying power (50 X and 100X) and various laser powers 
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Fig. 1. Low-lying electronic levels of Cr3* in sapphire, designated by their representations in the cubic-field terms (Oh group) on the left. Fine 
structures, labeled on the right-hand side, result from the trigonal-field distortion of the corundum lattice and spin-orbit interactions. Splitting of the 
ground state, *A2, is too small to be resolved in the R-line optical spectra at room temperature. 

also were used. The R-line polarization was independent of all 
of them. Furthermore, no line shifts or changes of splitting 
between R lines were observed. This convinced us that thermal 
equilibrium was preserved during excitation. Still, for all data 
presented later, the laser output power used was ~1 mW. 

Two sets of experiments were performed to investigate the 
emission polarization, as well as the effect of absorption aniso- 
tropy. In the first series, the normal to the ruby-plate extended 
surface was aligned with the optical axis of the system, as 
shown in Fig. 2. Meanwhile, the E vector of the linear-polarized 
laser output was kept normal to the entrance slit. Then, each 
ruby plate was rotated about its extended surface normal and 
the R-line intensity change was recorded as a function of 6, the 
angle between the optical c-axis of the crystal and the direction 
S of the spectrometer. The laser output power was constant 
during each experiment, and the same experiments were per- 
formed under excitation of the 488.0 and 514.5 nm laser lines. 

Results from the first series of experiments reflected the 
combined effects of absorption and emission anisotropy of 
ruby. Then, a second series of experiments were conducted to 
separate these two effects. Although the extended surface of 
each sample was still perpendicular to the optical axis of the 
system, in this set of experiments, one of the two in-plane 
crystallographic axes was aligned parallel to the direction S 
(6 = 0° or 90°). During the experiment, the E vector of the laser 
was rotated about the optical axis using a 1/4 waveplate. The 
fluorescence was recorded as a function of the angle d>, which 
is the angle between the laser E vector and the ruby optical axis 
(shown in Fig. 2). Since there was no change of the crystallo- 
graphic direction relative to the direction of maximum sensitiv- 
ity of the spectrometer, the variation in the R-line fluorescence 
intensity was then solely due to the anisotropic absorption intro- 
duced by the rotation of the laser E vector relative to the 
ruby crystal. 

Because all the experiments performed involved the rotation 
of either the laser E vector or the ruby crystal relative to the 
optical system, the polarization characteristics of the system 
transmissibility must be included in the analysis. A white light 

source in the transmission mode of the microscope was used for 
this evaluation. A polarizer was inserted between the white 
light source and the optical system, then the intensity of trans- 
mitted light was recorded at the R lines and the laser frequen- 
cies when the polarizer was rotated about the optical axis of 
the system. The transmissibility was slightly different for two 
incident illuminations with their E vector being perpendicular 
to each other. All data presented have been corrected from this 
angular variation of the system. 

(2)   Absorption Measurements 
The absorption spectra of ruby have previously been studied 

under a variety of experimental conditions.114"16 The absorption- 
peak positions and intensities are dependent on Cr3* concentra- 
tion, temperature, and pressure. An increase in any of these 
parameters causes broadening and intensification of the spectra; 
however, pressure induces a blue shift (move to high energies), 
whereas increases in temperature and chromium concentration 
tend to shift the absorption bands to lower energies. Also, a 
shift in the absorption spectra of the extraordinary (ir-polarized) 
and ordinary (o-polarized) rays occurs. All these effects have 
been well quantified. For dilute ruby at ambient conditions, the 
peak wavelengths for the blue and green bands are 398 and 
543 nm for extraordinary rays and 412 and 558 nm for ordinary 
rays, respectively.16 Unfortunately, there are no reported values 
of ruby absorption coefficients at the wavelengths used in our 
fluorescence experiments (488.0 and 514.5 nm). 

Therefore, we measured the absorption coefficients for the 
same ruby crystals used in our fluorescence experiments. The 
absorption measurements were performed using a variable 
angle spectroscopic ellipsometer (J. A. Woollam Co., Lincoln, 
NE). The linear polarized monochromatic light was produced 
by a 75 W xenon lamp (with functional bandwidth of 200- 
1100 nm) in combination with a monochromator and a calcite 
Glan-Taylor prism. The sample was analyzed on a motorized 
goniometer, and the transmitted and reflected light were col- 
lected by a silicon photodiode detector. The transmission scans 
were conducted at normal incidence, whereas the reflection 
scans were performed at an incidence angle of 12° to the surface 
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Fig. 2. Schematic diagram of the optical backscattering arrangement used in the fluorescence measurements. Direction of maximum sensitivity of 
the spectrometer, S, the slit configuration and opening direction, and the optic axis are indicated, as well as the polarization direction of the light used 
to excite the fluorescence. Notation c(a,m) denotes the orientation of the ruby crystallographic axes in successive experiments. 

normal. The measurements for the absorption of a-polarized 
light (E 1 c) and -ir-polarized light (E \\ c) were made over the 
range of 300-800 nm with steps of 1 nm. 

III.   Results 

The Rl and R2 emission lines are strongly polarized and 
consist of two polarization components. The E field of the weak 
component is parallel to the c-axis, and that of the dominant 
component lies within the basal plane but has no preferred 
vibration direction in the plane. Figure 3 shows the TT- and 
o--polarized emission components of the R lines, where TT and 
a polarization refer to the radiation polarized with the E field 
parallel to and perpendicular to the c-axis of the ruby crystal, 
respectively. A large difference in the intensity ratio between 
two components, /£//£, exists, with values of 14.2 and 4.2 for 
the Rl and R2 lines, respectively. (The superscript e refers to 
emission, and the intensity / is the total area under the fluores- 
cence line.) Defining the degree of polarization, P, by the ratio 

P = £ + /; (i) 

then the values for the Rl and R2 lines are PR1 = 87% and 
PR2 = 62%, respectively. Because of the polarization character- 
istics of the spectrometer, the fluorescence signal collected will 
be a function of 0, the angle between the c-axis and the spec- 
trometer direction, S (Fig. 2): 

r{6) = /; cos2 e + i'a sin2 e (2) 

Thus, the intensity ratio of the R2 line to the Rl line gradually 
changes from a maximum value of 1.64 at 6 = 0° to a minimum 
of 0.48 at 6 = 90° in the first series of experiments. The 
angular dependence of the intensity ratio is plotted in Fig. 4 as 
a function of 0, with excitation at 514.5 and 4.88.0 nm. The 
identity (within the experimental scatter) of the two profiles, 
despite the difference in absorption cross section, H, at these 
two frequencies, indicates that the R-line intensity ratio is inde- 
pendent of the absorption process. However, plotting the /(Rl) 
or /(R2) individually (Fig. 5) revealed the anisotropy of the 
ruby absorption, as will be discussed in a following section. 
Both profiles have the same functional form: 

r{6) = S(cos2 0 + C sin2 0) cos2 0 + \-ß\ sin2 0 (3) 

and C is numerically equal to 1.4 and 2.0 for the 488.0 and 
514.5 nm excitations, respectively. 

The second series of the experiments verified that terms in 
the first set of parentheses in Eq. (3) were, indeed, the aniso- 
tropy of the ruby absorption. Figure 6 shows the intensity varia- 
tion of both fluorescence polarization components with the 
angle <j>, using 514.5 nm excitation. All four profiles exhibit the 
same angular dependence, with the only difference being in the 
numerical value of the constant D: 

7e(cp) = £>(cos2 <|> + C sin2 cj>) (4) 

Here, B is a constant that depends on the incident laser intensity 

The constant C has the same value as determined previously 
inEq.(3). 

The absorption spectra of our ruby sample for polarized light 
are plotted in Fig. 7 in terms of the absorption coefficient a 
(a = Clc). The data were derived from transmittance data, and 
the chromium concentration, c, was 1.22 X 1019 cm"3. The 
dichroic ratios (f^/ÜJ at 488.0 and 514.5 nm were 1.6 and 
2.1, respectively. 

IV.   Discussion and Applications 

The luminescence intensity depends on the number of the 
Cr-3d electrons raised to excited states and on the probability 
that an excited electron will then return to its ground state by 
emission of a photon. The number of electrons raised to excited 
states depends on the strength of the absorption transitions. The 
transitions from the *A2 ground state to the T2 and T, broad 
bands are spin allowed and relatively strong, whereas those to 
the sharp levels—2A, E, 2T„ and 2T2—are spin forbidden. 
However, no matter which excited state is attained by optical 
excitation, almost all the excited electrons ultimately end up in 
the 2A and E states by nonradiative transitions from high- 
energy states. Therefore, if N electrons are excited per second, 
an equal number of electrons will decay back to the ground 
state under thermal equilibrium conditions. Three different 
decay paths are possible: radiative transitions through nonpho- 
non R lines and nearby phonon vibronic sidebands, and nonra- 
diative transitions. The vibronic sidebands of the R lines result 
from the creation or destruction of one or more quanta of 
lattice vibrational energy (phonons or local modes) occurring 
simultaneously with the electronic transitions. They are rela- 
tively weak bands in emission and absorption, extending over 
-1000 cm"1 from the R lines (not shown in Fig. 1). Under 
continuous excitation, the absorption process is in equilibrium 
with the emission process and can be related by 
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Fig. 3.   Polarized emission of the ruby R lines at room temperature. Laser E vector was parallel to the collection direction S. Symbols TT and cr refer 
to the polarizations of the extraordinary and ordinary rays, respectively. 

N = N(R)+Nvib + Nm (5) 

where N(R), Nvib, and N„r are the number of electrons that 
decay through R-line emission, vibronic sidebands, and non- 
radiative transition, respectively. Under equilibrium, the distribu- 
tion among the three decay paths is determined by the pertinent 
transition probabilities, which, in turn, are proportional to the 
absorption cross section through a Bpltzmann distribution. 

Noting that N(R) = N(2A) + N(E), then 

/(R2) oc jn dvN(2A) x J"H dv 
1 + K 

N (6c) 

N{2A) 

N(E) 
= eXplffj = * 

/(Rl)oc J fi dvN(£) <* Jfidv y-^ N 

(6a) 

(6b) 

where / ft dv and j ft dv are the integrated absorption cross 

sections for R lines. At ambient and stress-free conditions, the 
splitting between Rl and R2 lines, A£, is 30 cm"'; thus, the 
Boltzmann factor, K, is 0.87. N is directly proportional to the 
intensity loss or absorbed, A/, as light is transmitted through a 
unit thickness of ruby. Using the Beer-Lamber law that /„// = 
exp(ft"cd), where ft" is the absorption cross section at the 
excitation frequency, c the chromium concentration, and d the 
thickness of the crystal, the intensity change can be written as 
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A/ = (/„ - n  '■ = -j[l - exp(-ftexa/)] (7) 

In our case, the probe has a maximum depth resolution of 
<200 p-m; thus, A/ « (fleY)/0. (This approximation tends to 
break down when an ultralong working distance lens is used, 
because they usually have low magnifying power (<5X).) 
Combining Eqs. (6) and (7), we obtain 

/(Rl) - /Odv 
Rl 

1 

/(R2)°c Jfldv 
R2 

1 +K 

K 
1 + K 

(£1? cos2 <|> + Q,? sin2 <(>)    (8a) 

(ft? cos2 4> + £2" sin2 <)>)     (8fc) 

By comparison with the phenomenological Eqs. (3) and (4), C 
is equal to the dichroic ratios, Cl"/D.", at the excitation fre- 
quency. Furthermore, the value of C from the fluorescence 
measurements (fitting value) and absorption spectra agree with 
each other to within 15%. 

The fluorescence and absorption measurements confirm that 
the emission and absorption are essentially independent pro- 
cesses with characteristic angular dependence. Therefore, the 
fluorescence intensity ratio between two polarization compo- 
nents, /£//£, is simply the integrated dichroic ratios at the Rl 
and R2 frequencies. The literature usually only gives the peak 
values of the R-line absorption cross section, ClR. Realizing that 

fQ, dv oc Q,RwR (9) 

where wR is the full width at half maximum of the emission/ 
absorption line,* the integrated dichroic ratios for the R lines is 
equal to the dichroic ratio at peak frequency, H^/H*. Based on 
the literature value,'4 we estimate the integrated dichroic ratios 
to be 13.7 and 4.21 for Rl and R2, respectively. This agrees 
well with our measurements of 14.2 and 4.2 for £//£ of the Rl 
and R2 lines. Because the collected fluorescence signal depends 
on 6, as shown in Eq. (2), the intensity ratio of R2 to Rl should 
have the following angular dependence: 

*At room temperature. wR, = 11.0 cm"' and wR; = 8.7 cm"' for 0.05 wt% ruby. 
The two widths are independent of crystal orientation. 

,,„,,<     / /n„ dv cos2 6 + fSla dv sin2 e\ 

/(Rl)     I /n„ dv cos2 6 + jü.a dv sin2 6 K   ' 
\R1 Rl / 

Indeed, the observed angular dependence plotted in Fig. 4 can 
be fitted to Eq. (11): 

/(R2) _    /cos2 6 + F sin2 ff 
/(Rl)       I cos2 6 + G sin2 0 (11) 

with E, F, and G having the values 1.64, 4.2, and 14.2, respec- 
tively. In comparison with Eq. (10), 

E = 'R*W(Sa.« Jft„dv, ">R1 

/nCTdv 
F = S2  

jn. dv 
R2 

and 

Jiladv 
j~>  __  RJ  

jfl, dv 
Rl 

(12a) 

(12ft) 

(12c) 

and, again, the fitted values agree with those predicted. 
Equation (11) provides the basis for an experimental determi- 

nation of the orientation of a sapphire crystal (containing a 
trace amount of Cr3+) from the R-line intensity ratio. When 
implemented in optical microscopy, this orientation technique 
is capable of high spatial resolution. Although a single mea- 
surement of the intensity ratio only gives the angle d, the 
direction cosines of the c-axis can be evaluated by three consec- 
utive fluorescence measurements, in which the laser E vectors 
are successively set perpendicular to each other. This can be 
easily achieved by using a 1/4 waveplate or simply by rotating 
the sample. In many cases, however, a knowledge of only the 
angle between the c-axis and one particular direction, such as 
the fiber axis, is required. 

To illustrate the utility of the orientation technique, we con- 
sider the following application: the determination of the orien- 
tation of sapphire-fiber reinforcements in composites and the 

67 



74 Journal of the American Ceramic Society—He and Clarke Vol. 80, No. 1 

13 
C 
o u u v. 

o u 

i) 

1.8 106 

,«       - 1.6 10' 

1.4 10° 

1.2 10° 

1.0 10° 

8.0 10'    - 

S-       6.0 10" 

4.0 10 

1.3 10 

I   i   i   i i   i   i   i   i   i   i   i   i   i   i   i   i   I 

O-polarization v_ j 

•—        1.1 10 

9.0 10' 

7.0 10" 

5.0104    " 

3.0 10' 
-120 -80 -40 0 

<j> (degree) 

40 

Fig. 6.   Variation of the two R-line intensities ((■) Rl and (•) R2), as a function of the angle between the laser E vector and the ruby c-axis for the 
two polarization components CT and IT (514.5 nm excitation). 

subsequent piezospectroscopic analysis of the residual stress 
in the fiber. (The fibers are under a residual, internal stress 
because, on cooling from the fabrication temperature, strains 
develop because of the difference in thermal expansion between 
the fibers and the matrix.) Because of the crystallographic 
anisotropy of the elastic modulus and the thermal expansion 
coefficient of sapphire, substantial variations in the internal 
stress distribution in one fiber to the next can occur, because of 
variations in the angle between the crystal c-axis and the fiber 
axis. Therefore, the precise knowledge of the c-axis direction is 
essential to determine the stress distribution. The small cross 
section of the fibers useful for reinforcement (typically d « 
100 |xm or smaller) precludes standard X-ray analysis, and, in 
addition, analysis of individual fibers identified in a microscope 
is generally desirable. As a specific example, in Fig. 8, we 
compare the R-line spectrum from a sapphire fiber embedded 
in a 7-TiAl intermetallic matrix composite to that from a free- 
standing c-axis sapphire fiber. (The fiber end was exposed by 

sectioning the composite.) The change in the R-line intensity 
ratio is a result of the existence of a finite angle 0 between the 
fiber axis of the embedded fiber and its crystallographic c-axis 
(Fig. 9). Using the experimental measurement of the R2/R1 
ratio and Eq. (11), the angle was determined to be 71° by 
analyzing a set of spectra recorded at three perpendicular polar- 
ization directions. This angle was subsequently verified by 
X-ray measurements after extracting the fiber by etching away 
the matrix. In addition to the intensity variation, the comparison 
of the two spectra in Fig. 8 also indicates a frequency shift 
induced by residual stresses in the embedded fiber. Using R-line 
fluorescence, evaluation of the axial and radial stress compo- 
nents in c-axis sapphire fibers in various matrix materials has 
been demonstrated elsewhere to be possible in conjunction with 
elasticity calculation10'7 or by the use of the full piezospectro- 
scopic tensor.18 Having used the R2/R1 ratio to determine the 
crystallographic orientation of the fiber, we can extend the 
piezospectroscopic analysis to sapphire fibers with random ori- 
entations, as described in Appendix A. If the angle between the 
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fiber axis and the sapphire c-axis is 6, then the fluorescence 
peak shift can be related to the stress components defined in the 
fiber coordinate system shown in Fig. 9, using Eqs. (A-l), 
(A-2), and (A-5) from Appendix A: 

AvR1 = 3.26(CT„ + a22 cos2 8 + a33 sin2 8) 

+ 1.53(0-22 sin2 8 + 0-33 cos2 8) 

AvR2 = 2.73 (a,, + CT22 
cos2 0 + 0"33 sin2 8) 

+ 2.16(o-22 sin2 8 + o33 cos2 8) 

(13a) 

(13fc) 

Because only two equations based on fluorescence peak shifts 
alone have been shown, an additional relationship between 
the three stress components is evidently required. This can be 
obtained by relating the residual stresses in an off-axis fiber 
embedded in a matrix to the thermal mismatch strain based on 
an Eshelby type of calculation. Additionally, for small angular 
misalignments, o„ and o>„are sufficiently similar that they can 
be assumed to be the same, and, thus, the axial and radial 
stresses can be obtained directly from Eqs. (13) to a good 
approximation. 
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Fig. 9.   Schematic diagram illustrating the crystallographic coordi- 
nates and the reference fiber frame for an off-axis sapphire fiber. 

In addition to the orientation determinationof single crystals, 
the R-line fluorescence from polycrystalline A1203 also pro- 
vides information about any preferential distribution, or texture, 
of the c-axes. The R-line intensity ratio for a perfectly random 
polycrystalline alumina has been calculated in Appendix B. 
The result is plotted in Fig. 10 for excitation wavelengths of 
350-600 nm. With a knowledge of the intensity ratio for per- 
fectly random grain orientations, obtaining information about 
the texture in polycrystalline alumina is possible by examining 
the intensity ratio of its R-line fluorescence. This may well be 
of importance in the cases of thin-film or oxide scale in which a 
continuous change in grain-orientation distribution during 
growth is present. For instance, in a recent study'2 on oxide 
scales formed by oxidation of aluminum-containing alloys, a 
large local variation of the R-line intensity ratio was observed, 
as well as a variation with oxide thickness. 

Finally, calculation of the possible impact of the R-line polar- 
ization on the values of stress determined by piezospectroscopic 
measurements is worthwhile. One direct consequence is that 
the collected fluorescence intensity will depend on the crystal- 
lographic orientation relative to the laser E vector, as well as 
the collection direction S. Therefore, all grains in a random 
polycrystalline alumina do not contribute evenly to the overall 
fluorescence intensity, and the angular distribution, /(<?), is 
given by Eqs. (B-l) in Appendix B under a fixed optical setting 
(E || S). The previous analysis9 of the piezospectroscopic 
measurements in polycrystalline ceramics was based on the 
assumption of a uniform intensity distribution. For a grain with 
arbitrary orientation, the frequency shift due to an applied stress 
field is given by the following relation: 

Av = n„a,,a,,o-,. (14) 

where the transformation matrix atJ is defined in Eq. (A-4). n,7 

is the piezospectroscopic coefficient defined in Appendix A. 
The angular distribution of the fluorescence intensity serves as 
a weighting function in calculating the average frequency shift, 
and the direction of the laser E vector is selected as the Z-axis 
of the laboratory coordinate. The average frequency shift due to 
an applied stress field is then given as 

—     Jf/p(ft<p,4>)/(g)Av di9d4> dip 
~   HSP(0,<$>,A>)I(0) död* dij) 

(15) 

The probability, />(ft<t>,iJ0, of a grain oriented at (#,<}>.ip) is 
shown in Eq. (B-2) in Appendix B. Equation (15) then reduces 
to 

Sv = i(n„ + n22 + n33)(o-„ + o-22 + o-33) 

+ WOT,, + n„ - 2n33)(o-„ + a22 - 2o-33)    (16a) 

where 

H = 
6 + 5 + t - ist 

21(3 + 2s + 2t+ Bst) 
(16ft) 

Here, 5 is the integrated dichroic ratio for the Rl or R2 line and 
t is dichroic ratio at the excitation frequency. The first part of 
the Eq. (16a) is identical to the earlier result by Ma and Clarke,9 
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included. The polarization characteristics of the R lines intro- 
duces the second term in Eq. (16a), which distinguishes the 
stress along the laser E vector, o-33, from the other two stress 
components. The constant H is plotted in Fig. 11 as a function 
of the excitation wavelength. From this, the correction factor H 
does not exceed 5% for the excitation range of 300-650 nm. 
Therefore, the polarization-dependent term in Eq. (16a) can 
generally be ignored in all but the highest-precision stress mea- 
surements made using piezospectroscopic techniques. (In cubic 
materials, this second term is zero.) 

V.   Summary 

The polarization characteristics of the ruby R lines have been 
studied, and the value of degrees of polarization are reported 
for Rl and R2 lines. The measured emission polarization char- 
acteristics of the R lines can be successfully interpreted in terms 
of the absorption dichroic ratio at the excitation and R-line 
frequencies. Consequently, a spectrophotometric determination 
of the sapphire c-axis is introduced, using the angular depen- 
dence of the R-line intensity ratio. This technique can be used 
to obtain highly localized orientation information on single 
crystals as well as polycrystalline A1203. The effects of the 
polarization dependence on piezospectroscopic measurements 
also have been discussed. Resolving stress components in a 
randomly oriented single crystal by the full piezospectroscopic 
tensor becomes feasible. Also, the effect of the angular depen- 
dence of fluorescence intensity can generally be neglected dur- 
ing stress measurement in polycrystalline AI203. With further 
calibration, the present framework can be adapted by other opti- 
cally active crystalline materials, such as CnMgO, Ti:Al203, 
and Ti: YAG, and various color centers. 

APPENDIX A 

Stress Measurement in Sapphire Fibers 

Our recent calibration13 of the ruby piezospectroscopic coef- 
ficients revealed small differences in II „ and II22. However, for 
the sake of simplicity, we have ignored this refinement for 
compressive loading. Average values defined by linearly fitting 
the observed R-line shifts under uniaxial compression along 

the a- and «i-axes are used here, which are then 3.26 and 
2.73 cm" VGPa for the Rl and R2 lines, respectively. The piezo- 
spectroscopic relationship (Eq. (6) in our previous work13) may 
then be written as 

AvR1 = 3.26(o-* + <J*2) + 1.53o-*3 (A-la) 

AvR2 = 2.73(0-*, + oi2) + 2.16a|3 (A-16) 

where a% is the stress state defined in the crystallographic 
basis of ruby lattice. The stress on crystal structure, <J%, can be 
related to the applied/residual stress components by 

0-* = altaj,<Tti (A-2) 

where au is the matrix transforming crystallographic axes, x], to 
reference coordinate, X„ in which the applied/residual stresses 
are defined: 

X, = a„x! (A-3) 

In terms of the usual Euler angles (0,<|>,I|J), the transformation 
matrix is 

(cos 4> cos i|< - sin (f> cos 0sin \\i  -cos <(> sin v|) - sin 4> cos Oax i|<    sin ffsin <(> \ 

sin <t> cos 4« + cos <(> cos 0sin \\i  -sin 4> sin <V + cos <(> cos Scos <|>   -sin 9cos $ 

sin Ö sin ip sin0cosi|< cos 6     I 

(A-4) 

where 0 < 0 £ IT, 0 £ <f> :£ 2ir, and 0 :£ »|f S 2ir. 
The assumption of isotropic piezospectroscopic properties in 

the basal plane enables the stress state in off-axis sapphire fiber 
to be expressed analytically. If the fiber axis of a sapphire fiber 
embedded in a composite lies at an angle 6 to its c-axis, then the 
number of independent residual stress components increases to 
three, as a result of the crystallographic anisotropy in the ther- 
mal expansion of sapphire. Using the coordinate system indi- 
cated in Fig. 9, the fiber axis is the Z-axis, and the F-axis is a 
projection of the crystallographic c-axis onto the Z-plane. 
Because of the assumed basal-plane isotropy in the piezospec- 
troscopic properties, we can simply set the z'-axis of crystallo- 
graphic basis along its c-axis and let the x'-axis coincide with 
the fiber Z-axis. As a result, <f> = «|; = 0 in this case, then the 
transformation matrix is 
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Fig. 11. Variation of constant H (Eq. (16i>)) for the R lines with the excitation wavelength ((—) Rl and (---) R2). Values of the integrated dichroic 
ratio used in the calculation are 14.2 and 4.2 for the Rl and R2 lines, respectively. Dichroic ratio of excitation was obtained from the absorption 
spectra in Fig. 7. 
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11.4 + 
(A-5) 

which can be used in the evaluation of the stress components. 

APPENDIX B 

Average R-Line Intensity Ratio in Polycrystalline A1203 

If we ignore the fluorescence excited by the scattered light 
from grain boundaries/ the emission from every grain in a 
polycrystalline A1203 can be treated independent of each other, 
and the overall emission polarization effects can be treated as a 
simple summation of the spectra from individual grains. As a 
result, the average intensity ratio of the R2 line to the Rl line is 
the ratio of the overall intensity of the R2 lines to that of the Rl 
lines. In the case of the laser E vector parallel to the collection 
direction S, the R-line intensity is just a function of 6, as 
indicated in Eq. (3). In terms of ruby optical constants, then 
Eq. (3) can be written as 

/(R2) « (J"ft„ dv cos2 6 + jü.a dv sin2 0 
\R2 R2 / 

If 

X (ft? cos2 e + fi:" sin2 6)-—-r, (B-la) 
1 + A 

/(Rl) «   Jft„ dv cos2 6 + fO.„ dv sin2 0 

X (ft? cos2 <}> + ft? sin2 *)j-^ (B-lfc) 

If the orientations of the grains are random, then the probability 
of a grain oriented at (#,<|>,*|() is given by 

/?(0,cp,iW = Ig—51 sin <9d<?d<}>di|; (B-2) 

By averaging over all possible angles, the average R-line inten- 
sity ratio is obtained: 

_ JJ/p(ft<|>,<|0/(R2)dfld<t>di|j 
/(R2)//(R1) 

K 

jyj>(0,4>,i|O/(Rl) d0d<f> d»|i 

3+lfk"-j"+(2+@/.n-d" 

(B-3) 

Rewriting Eq. (B-3) in terms of constants £, F, and G, defined 
in Eq. (12), and using the fitting values presented previously, 

'This assumption may not be valid if probes with large depths of field relative to 
grain size are used. In this case, grains far below the surface can be excited by the 
light penetrating through grain boundaries above, and scattering could change the 
polarization of the incident light substantially. The ideal case is thin films with 
columnar grains. 

/(R2)//(R1) = 1.64 

35.6ftg 
ft" 

31.4 + 
115.6ft' 

(B-4) 

ns 
The result is plotted in Fig. 10 for excitation wavelengths of 
350-600 nm, based on the frequency dependence of absorption 
dichroic ratio, ft?/ft?, measured in this work. It shows that the 
overall intensity ratio varies very slowly with the change of the 
excitation wavelensth. 
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Abstract—Residual stresses in dielectrics and semiconductors induced by metal lines, pads and vias can 
have detrimental effects on the performance of devices and electronic packages. Analytical and numerical 
calculations of these stresses have been performed for two purposes. (1) To illustrate how these stresses 
relate to the residual stress in the metallization and its geometry; (2) to calibrate a piezo-spectroscopic 
method for measuring these stresses with high spatial resolution. The results of the calculations have been 
presented using non-dimensional parameters that both facilitate scaling and provide connections to the 
stresses in the metal, with or without yielding. Preliminary experimental results obtained for Au/Ge 
eutectic pads illustrate the potential of the method and the role of the stress analysis. 

1. INTRODUCTION 

Residual stresses have an important (and sometimes, 
crucial) influence on the fabrication and reliability of 
many devices [1-3]. Both intrinsic and thermal expan- 
sion mismatch stresses are involved [4]. A knowledge 
base has been established that provides some under- 
standing about the origin of these stresses [4], as well 
as their effect on decohesion at interfaces and on 
cracking [5, 6]. However, a continuing problem is 
the quantitative prediction of the magnitude of these 
stresses and of the incidence of decohesion and 
cracking. 

The principal problem concerns the stresses 
induced by the metallization. These are caused either 
by interconnects or vias or by the brazes used to 
attach the Si to the dielectric [1,2]. Residual stresses 
associated with metallization have previously been 
measured by one of two methods: beam bending and 
X-rays [7, 8]. These methods have been used with 
continuous metal films on either dielectric or semi- 
conductor substrates. Beam curvature and X-ray line 
shift measurements give the average stress in the 
metal. In special cases, X-ray methods can measure 
the stress gradient as a function of depth normal to 
the interface [9]. 

The greater challenge is to address the spatial 
distribution of stress in the substrate when the metal- 
lization is patterned to form interconnects, vias or 
pads. These stresses dominate interface decohesion 
and cracking [5,6]. So far, measurements have been 
sparse and calculations limited. Laser-based piezo- 
spectroscopic methods have the requisite resolution 
[10-12]. These methods include fluorescence [10,11] 

and Raman spectroscopy [12]. Either method is cap- 
able of obtaining stress information in the substrate 
around the metallization. 

One purpose of the present study is to demonstrate 
the fluorescence spectroscopy method for obtaining 
stresses in a dielectric substrate with high spatial 
resolution. The other is to inter-relate these stresses 
to those in the metal. Numerical calculations and 
preliminary experiments performed on eutectic metal 
pads are used for these purposes. 

2. STRESS MEASUREMENT METHOD 

2.1. Approach 

A gold-germanium eutectic on Cr-doped sapphire 
(ruby) was chosen as the model metal/dielectric 
system, such that stress measurements could be made 
using a piezo-spectroscopic technique, based on the 
systematic shift of fluorescence lines with stress [10]. 
Electrons excited from the chromium ions in the 
ruby by a laser decay back to the ground state, 
emitting photons in the process. In stress-free ruby, 
these photons occur at two characteristic frequencies. 
Application of stress perturbs the local environment 
of the chromium ion, shifting the fluorescence lines to 
higher or lower frequencies, depending on the stress 
state [11,13]. This frequency shift Av can be related 
to the stresses in the sapphire lattice aip by the 
following constitutive relation [13]: 

Av = n„<r„ (1) 

where Ü,, is the first-order piezo-spectroscopic 
coefficient. Second-order effects are small for the 
configurations used in the present study and are 
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neglected. However, Av is affected by the temperature 
[13], such that laser-induced temperature changes can 
be problematical, unless independently measured. 

2.2. Experimental procedures 

Stress measurements have been made in the 
substrate surface by employing a chromium "in- 
diffusion" technique [14], wherein only the top 
(micron-thick) layer of the substrate fluoresces. 
For this purpose, a basal plane oriented sapphire 
substrate was prepared by evaporating 200 Ä of 
chromium onto one surface, followed by heating in 
a vacuum furnace for 2h at 1500°C to diffuse the 
chromium into the sapphire. The metal features were 
created by DC Magnetron sputtering. The first two 
layers comprised an adhesion layer of W/Ti and a 
diffusion barrier of Pt/Rh, each ~100nm thick. 
The final 40 pm thick Au/Ge layer had the eutectic 
composition. The features comprised square pads, 
2.1 mm on edge, having rounded corners (Fig. 1). A 
typical surface profile is shown in Fig. 1(a). A mag- 
nification of the edge is shown in Fig. 1(b). However, 
there was significant variability in the edge profile 
from pad to pad. 

Stress measurements were made using an Optical 
Microprobe in which a laser beam could be focused 
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Fig. 1. (a) Atomic force microscopy scan of Au/Ge eutectic 
pad on sapphire substrate; (b) magnification of the edge 

profile. 

to a spot ~l/im diameter. Samples were probed 
across the center of each feature by translating in 
1 /itn steps using a linear actuator. Argon reference 
spectra were used to correct for mechanical drift 
in the optics. The temperature was monitored to 
account for peak shifts due to temperature changes. 
The spectra were analyzed using a commercial soft- 
ware package, wherein each peak was fit to a mixed 
Gaussian-Lorentzian function. The central position 
of each peak was used to determine the stress by 
taking a point far from the feature as a stress-free 
reference. 

2.3. Spatial convolution 

When the stresses exhibit large spatial variability 
over short distances, the finite size of the optical 
probe convolutes the stress function, a{x) with the 
probe response function, p(x). In order to deconvolute 
the measured fluorescence profile, p(x) must be 
experimentally calibrated. This was done by using 
a step-source. The function C(x) measured at such a 
source is simply related to p(x), by, 

p(x) oc dC/dx. (2) 

Experimentally, a step function has been created by 
placing a 200 Ä thick line of Au onto a Cr3+ doped 
sapphire substrate. Scanning in 1 pm steps across the 
edge has given the convolution of the probe function 
with a step function shown in Fig. 2(a). Upon fitting 
the derivatives to a Lorentzian, [Fig. 2(b)], the probe 

-10      -8       -6       -4       -2        0        2        A 

Position, x (pm) 

Position, x <tim) 

Fig. 2. (a) Signal for Au strip C(x) that convolutes the probe 
function p(x) with the step function, (b) The derivative of 

C(x) that gives the probe width. 
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Problem 0 Problem (2) 

Problem (3) Problem 0 

Fig. 3. The metallization geometries used for the numerical calculations. 

width at half maximum was found to be 3 ßm. The 
high spatial resolution of the fluorescence probing is 
thus affirmed. 

3. STRESS ANALYSIS 

3.1. Procedure 

A finite element method has been used to calculate 
the stresses in the dielectric. Four representative 
metallization geometries have been used: a line having 

initial state 
(stress-free) 

(a) 
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displacement continuity 0" applied for 
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requirements 

(d) 

uniform thickness [Fig. 3(a)], a line having constant 
curvature [Fig. 3(b)], a circular pad [Fig. 3(c)] and a 
square pad [Fig. 3(d)] both with constant thickness. 
The dielectric is considered to be elastic and the 
metal elastic-perfectly plastic, with yield strength, a0. 
Residual strain in the system has been motivated by 
a mismatch in thermal expansion coefficient between 
the metal, ccm, and the dielectric, ad (Aa = am -ad), 
and a cooling temperature, AT (Fig. 4). 

3.2. Analytical approximations 

Useful principles are established by means of 
approximate analytical calculations (Fig. 5). A pair 
of line forces in the x-axis, P per unit thickness, 

P = Oh 

Fig. 4. The differential strain that causes the stresses in the 
substrate. 

(a) Stresses Induced by Surface Forces, P 

A      M = on ns/ü   ^ 

4- ^ 
(b) Bending Induced Stresses 

Fig. 5. The forces and moments imposed by the metalliz- 
ation used to obtain analytical estimates for the stress in the 

dielectric. 
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is applied to the dielectric surface where the film 
terminates (v = +d), such that, 

P= -dh (3) 

where 5 is the average misfit (residual) stress in the 
film and h is the film thickness. The stresses cyv in the 
dielectric around thin metal strips, width 2d, are then 
obtained from the following formulae [Fig. 5(a)]. The 
stresses along the dielectric surface (z =0), are [15] 

ayrd 4/TZ 

~dh~ = [(y/df -1] 

and along the symmetry plane (y = 0), 

ayyd _       4/TC 

(4a) 

ah 
(4b) 

[(=/</)'+1] 

The large tensile stress concentrations near the edge 
are a particular concern for fracture in the dielectric 
and for interface debonding. 

For finite substrates thickness h„ bending occurs 
and redistributes the stress. The stresses induced by 
bending are given by beam theory [Fig. 5(b)]. The 
stresses near the surface (z asO) are [15] 

ayyd    3d 
öh       k 

(5a) 

■!)} 
(5b) 

and along the symmetry plane (y = 0), 

ayyd _ Jid~ 
ah hs 

The total stresses in the dielectric substrate are the 
sum of equations (4) and (5). 

For plane strain (E„ = 0), the axx stresses can be 
readily obtained from a„. because a.. & 0, giving, 

(6a) : vcrn 

such that 
[ + o/, = ff,,(l+v). (6b) 

3.3. Numerical results 

The finite element method was used to obtain 
detailed results for the substrate stresses induced by 
metal lines or pads (Fig. 3). Problems 1 and 2 (metal 
lines) were treated as plane strain and problem 3 
(metal pad) as axisymmetric. For comparison, a 3-D 
finite element analysis has been performed for a 
square pad, problem 4. A general purpose finite 
element code, ABAQUS, with eight-node biquadratic 
elements is used for the plane strain and axisymmetric 
calculations and 20-node quadratic brick elements for 
the 3-D calculations. 

3.3.1. Uniform thickness metallizations. The 
analytical approximations have established that the 
normalized stresses in the dielectric, a^laji, are 
only dependent on the system geometry. They are 
independent of the material properties. This was first 
affirmed by finite element results calculated for 
narrow lines with a range of properties: EJEm = 1-6 
and ä0jEm = 0.0005-0.007 (subscript d for dielectric 
and m for metallization). 

Normalized Misfit Stress. EmaaAT/(1-v)C0 

Fig. 6. Effect of misfit strain on the stress induced in the 
dielectric beneath a thin metal line (r = y = 0). 

All subsequent results are for, Ei/Em = 6 and 
a0/Em = 0.001. The system geometries were varied 
within the ranges 0.04 < h/d < 0.1 and 1 < hjd < 10. 
A typical finite element mesh includes 760 elements 
and 2409 nodes. A convergence study revealed that 
these meshes provided accurate results. 

(i) Narrow Lines 

The normalized ayv stresses in the dielectric at 
the symmetry plane, near the interface (>• = 0, 2 - 0), 
are plotted in Fig. 6 as functions of the normalized 
misfit stress, £1 = EmAuAT/(\ -v)<r„. The ayy stress 
increases linearly with increase in Q until the metal 
line has fully yielded, at £2 as 1. Thereafter, the ayy 

remains constant. The stress distributions along the 
symmetry plane (>• = 0) after the metal line has fully 
yielded are summarized in Figs 7 and 8 (for 
hid = 0.025,0.04,0.1 and hjd = 1,10). Note that the 
same normalized stresses would obtain before yield- 
ing, if the yield strength er0 were replaced by the misfit 
stress in the metal. For a relatively thin substrate 
(hjd = 1), the stresses vary linearly with the distance 
from the surface, because the stresses are dominated 
by bending (Fig.  7).  For thicker substrates, the 

Distance from Surface, z/d 

Fig. 7. Stresses in the dielectric beneath the metal (y = 0) for 
a fully yielded narrow metal line, hjd = 1. The analytical 

results are also shown. 
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hs/d=10 

y = 0 

Distance from Surface, z/d 

Fig. 8. Stresses in the dielectric beneath the metal (y = 0) for 
a fully yielded narrow, thin metal line, hjd = 10. 
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Fig. 9. Stresses in the dielectric, near the surface (z = 0) for 
a fully yielded narrow, thin metal line (hjd = 10). The 

analytical result is also shown. 

stresses vary rapidly near the metal strip (Fig. 8) and 
are given with good accuracy by the analytical formula 
[equation (4)]. The large stress concentrations near the 
edge (z = 0, y = d) are confirmed (Fig. 9). Moreover, 
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the symmetry location (y =0): (a) thin substrate, hjd = 1; 

(b) thick substrate, (hjd = 10). 

the numerical results approach the analytical results 
at smaller h/d (Fig. 9). 

(ii) Circular Pad 

The equivalent results for the circular pad are 
summarized in Figs 10 and 11. As for the line, the 
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Fig. 11. Stresses near the surface of the dielectric (z = 0) beneath a circular pad, (hjd = 10): (a) radial 
stresses; (b) tangential stress. 
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Symmetry Plane 

>\, 

Symmetry Plane 

Fig. 12. The finite element mesh used for analysis of the 
square pad. For symmetry reasons, only 1/4 of the pad' 
substructure need be analyzed. The metal pad is at the top 
right outlined by ABCD. It is located on the face projected 

onto the plane of the figure. 

film becomes fully plastic when ft > 1. The stress 
distributions along the symmetry plane (y = 0) after 
the metal pad has fully yielded are summarized in 
Fig. 10 (for h/d = 0.025, 0.05, 0.1 and hjd = 1, 10). 
For a relatively thin substrate (As Id = 1), the stresses 
again vary linearly with the distance from the surface 
[Fig. 10(a)]: whereas, for thicker substrates, the stresses 
vary rapidly near the metal strip [Fig. 10(b)]. The 
numerical results for the radial o„ and tangential am 

stresses near the edge and the interface (Fig. 11) 
indicate higher stresses at smaller hid. 

(Hi) Square Pad 

The 3-D finite element analysis performed for 
a square pad, with hid = 0.025, hjd= 10, includes 
2900 20-node quadratic brick element and 13923 

nodes (Fig. 12). The computation required about 17 h 
of CPU time to complete 10 increments, to ensure 
that the metal pad had fully yielded. The ayy stresses 
along the symmetry plane (x = 0, z = 0) near the 
interface, after the metal pad has fully yielded (Fig. 
13), coincide closely with the axisymmetric values, 
except in the region near the edge. This result suggests 
that the results for the circular pads can be used to 
a good approximation for square pads. 

3.3.2. Curved lines. For a line with constant curva- 
ture, the a„ stress distributions along the interface 
(r = 0) after the metal line has fully yielded are 
summarized in Fig. 14 (for h/d = Q.\, 0.2, 1.0 and 
hs/d = 10). These stresses are compressive at the 
center of the line, but become tensile near the edge 
and reach a maximum at the edge. A comparison with 
the solution for a line of uniform thickness [Fig. 14(b)] 
illustrates one similarity and two differences. The 
stresses along the symmetry plane (>■ = 0) are similar. 
However, when the line has a curved surface, the 
compressive edge stress concentration is absent and 
the tensile concentration has substantially reduced 
magnitude. A rounded edge having the measured 
profile indicated in Fig. 1(b) causes similar effects 
[Fig. 14(b)] but the stress reductions are much 
smaller. 

n       4 - 

0° 

s 
D      2. 

E 
O       -2 
Z 

i—i—>—r ■■   
z = 0      ' 

■ 
h. 

- 
. / fi - 
- I u - 
• ! \V . 

■ ®\_- 
--< - .--*'' | h/d -k OJ! | 

- . „ „_i—i—i—i—J—1_ 
■ 

f 
Edge 

-y/d- 

1   "t— l'~ i   ■   i   *   i   .   i 1    i    i    i    < iiit. 

I hs/d = 1        : 

,rr 15 1 h/d = 0.025  : 
I « 

TJ 10 \ : 
* \ - 

t> 
b : V . 

ED ^^_ - 
n 

; 
"O ■5 

: \\ | ^ circular pad } 
CO 

E 
-10 1 <-**M- - . square -^    • y ■ 

o 
2 -15 ; pad           \ V : 

•?0 
: .    .    ,    .    ,    .   'i\ i    ..    i    i  . I i—i—i—1_: 

5 

, i, , , . . , . 
h/ds=1   " 

' \w h/d = 0.1 . 

. •T* z = 0 

Constant Curvature / 

: 

'i 
i 

■ 

===—<; - 
Rounded-^,\"v-'/ '  Uniform Thickness 

■ 

Edge 

  i  1       L 1  

if f        -y,d- 
Center of pad Edge of pad 

Fig. 13. The ayy stresses near the surface (- = 0) for the 
square pad. compared with those for the circular pad 

(hjd =10). 

f \ -y/d — 
Center Edge 

Fig. 14. (a) The <xlv stresses near the surface (r = 0) of a line 
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Fig. 15. Two experimental results for the oy>. stresses beneath 
a Au/Ge square pad on sapphire. Also plotted is the stress 
calculated for a pad having the measured profiled indicated 

in Fig. 1(c). 

4. PRELIMINARY EXPERIMENTAL 
RESULTS 

Fluorescence scans made across the center of the 
flat, square Au/Ge pads are indicated in Fig. 15. The 
line shifts exhibit the same four features evident in 
the stresses: (i) sharp maxima at the edges of the pads; 
(ii) a minimum at the pad center; (iii) a rapid 
approach to zero beyond the pads; and (iv) a sign 
change from regions beneath the pad to those out- 
side. The line shifts beneath the pads were quite 
reproducible, but there was appreciable pad-to-pad 
variability in the magnitude of the pads at the pad 
termination. 

A convenient means for comparing the measured 
peak shifts with the calculated values is to first use 
the results near the pad center, where the stresses are 
relatively uniform and essentially unaffected by the 
probe width. Subsequently, the full spatial distribution 
can be correlated. For circular, flat pads (hjd » 10, 
the stresses near the center) are (Figs 10 and 11), 

o„xom= -2.6<r0h/d 

The line shift [equation (1)] is thus 

Av « 5.2n,(M/rf) 

(7) 

(8a) 

enabling the stress in the metallization to be expressed 
as 

Avjdlh) 

5.2II,  ' 
(8b) 

Inserting the measured line shift gives a stress 
tr0«600 MPa. This stress is comparable with the 
tensile yield strength for this eutectic, estimated by 
hardness indentation as 550 MPa. The implication is 
that the thermal expansion mismatch, upon cooling 
after deposition, has been sufficient to cause yielding 
of the eutectic. However, there is an elevation in the 

temperature induced by the laser, which has not been 
accounted for in the analysis. Further study would be 
needed to address this effect. 

The probe used in these studies has sufficiently 
narrow width (3jum) that the convolution of the 
calculated stresses with the probe function p(x), is 
essentially the same as the stress itself. Hence, it 
should be possible to superpose the measured stresses 
directly onto the values calculated for the pad with 
the rounded edges (Fig. 15). The measured values, 
though having extensive variability at the edges, 
appear to reproduce the calculations. 

5. CONCLUDING REMARKS 

Stresses induced in a dielectric substrate by surface 
metallizations have been calculated for a range of geo- 
metric configurations. The stresses attain maximum 
values dictated by the yield strength of the metal. 
These arise whenever the misfit strains caused by 
thermal expansion, etc. are large enough to exceed 
the yield strain. There are large stress concentrations 
near the edges of the lines. These stress peaks can be 
diminished by altering the profile of the metallization, 
toward a more rounded configuration. 

Piezo-spectroscopic measurements of the stress in 
sapphire induced by metal pads have been made. 
The principal finding is that the stresses measured 
beneath the pad (in the sapphire), where edge effects 
have a minimal influence, coincide closely with the 
calculated values. 
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CONVERGENT DEBONDING OF FILMS AND FIBERS 
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Abstract—Debonding of films attached to substrates as well as fibers embedded in matrices typically 
involves initiation, steady-state propagation and a final transient as the debond converges on an edge or 
another debond. The emphasis in this paper is on the mechanics of the transient. Under most 
circumstances, a converging debond crack is characterized by an energy release rate that approaches zero, 
causing the crack to arrest without attaining full debonding. The relevance of this phenomenon will be 
discussed with reference to the measurement of toughness for thin film interfaces and the overall 
stress-strain behavior of ceramic matrix composites. © 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 

Residually stressed thin films debond from attached 
substrates when the stress and/or the film thickness 
becomes sufficiently large. The qualitative relation 
between the energy release rate G motivating growth 
of a plane strain interface crack is sketched in 
Fig. 1(a) for a film with a uniform residual stress a 
and thickness ?. When the crack tip is remote from 
the edges of the film, steady-state propagation 
conditions prevail with energy release rate 

Gs, = 
■ a-t 

(1) 

where E, and v, are the Young's modulus and 
Poisson's ratio of the film. When the crack is either 
short or long such that its tip is within several 
thicknesses of the edge, it "senses" the edge, and G 
decreases below the steady-state value of equation 
(1), approaching zero as the distance between the tip 
and the edge becomes small. Because equation (1) is 
the maximum energy release rate, the fail-safe 
criterion against debonding is: Gss < F, where T, is 
the interface toughness at the relevant mode mixity. 

Tests to measure the interface toughness of thin 
film-substrate systems often employ steady-state 
conditions [1,2] because the mechanics is simple and 
because accurate measurement of the crack length is 
not required. For such tests to be effective, a sharp 
pre-crack must be introduced. Otherwise, an in- 
itiation barrier exists. Often, there is a barrier 
[Fig. 1(a)] such that the combination of stress and 
thickness needed to initiate interface crack propa- 
gation exceeds that required for steady-state growth, 
causing Gss > Tj. The debond event is then dynamic, 
with the crack arresting when the tip approaches the 
far edge. Such a test would be designated unsuccess- 
ful in the sense that Gss [equation (1)] cannot be 
identified   with   F.   However,   when   the   relation 

between G and the crack length as the tip approaches 
the far edge is known, quantitative conclusions about 
T, can be made from measurements of the distance 
between the edge and the arrested crack tip. One 
purpose of the present paper is to supply the 
necessary solutions. 

The crack arrest phenomenon is depicted in Fig. 2 
[3]. It comprises a Ni-polymer bilayer on a polymer 
monolayer well bonded to a stiff substrate. The 
interface of interest is that joining the two polymers. 
The residual tension in the top polymer film is not 
sufficient to debond the interface. Therefore, a 
superlayer of Ni with strong adherence to the 
polymer and a large residual tension has been 
deposited. It is this stress which supplies the energy 
needed to debond the polymer-polymer interface. 
This occurs when the Ni film becomes sufficiently 
thick that super critical conditions are attained. 
Further details are given in Section 3.3. Here, it is 
noted that removal of an initiation barrier requires a 
complex additional step in specimen preparation [2]. 
Consequently, determination of the interface tough- 
ness from the arrest location of the debond cracks 
facilitated the testing and also gave more robust data. 

Related transient interface debonding is displayed 
by fibers embedded in brittle matrices. The behavior 
illustrated in Fig. 1(b) applies to a composite layer 
with uni-directional fibers carrying an overall stress c 
parallel to the fibers. When matrix cracks develop, a 
debond propagates up the fiber. The combined effects 
of applied stress, friction and residual stresses must be 
superimposed for complete analysis of debond 
evolution [4, 5]. Here, only the contribution due to 
the applied stress 6 will be addressed to highlight the 
convergence effect. There is again an initiation barrier 
because the energy release rate for very short debonds 
emerging from the tip of the matrix crack is below its 
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Film/Substrate Debonding Fiber/Matrix Debonding 

Fig. 1. Three stages of debonding for films and fibers. 

Ü 
n 

steady-state magnitude [5]. In steady-state, the energy 
release is given by [4]: 

G„ = 
(1 -/) (1 T SWR 

4/ E (2) 

where /is the volume fraction of the fibers and R is 
their radius. This particular expression is restricted to 
fibers and matrix having the same isotropic elastic 
constants, £and v. The effects of elastic mismatch are 
addressed later. As a debond spreads along the fiber 
and converges on another debond extending in the 
opposite direction from the neighboring matrix 
crack, the energy release rate approaches zero, as 
indicated in Fig. 1(b). The converging debonds arrest 

leaving a portion of the fiber still attached to the 
matrix. This behavior has implications for the overall 
stress-strain behavior of the composite discussed in 
Section 4. 

2. THE ASYMPTOTIC LIMIT FOR A 
CONVERGING DEBOND 

Consider two converging crack tips sufficiently 
close that the only relevant length is the distance AL 
separating them, as depicted by the plane strain 
problem in Fig. 3. This limit also provides a 
reasonable approximation for a debond tip ap- 
proaching a free edge, discussed in connection with 

Fig. 2. Thin polymer lines on a Si substrate with a SAM interface, plus a Ni superlayer. The intact ligament 
length gives the interface toughness. 
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— The associated energy release rate is given by 

E1.V1 

E2,v2 

AL 

Fig. 3. Geometry and loading for asymptotic debonding 
problem. 

Fig. 1(a). Moreover, it applies to debonds converging 
along a fiber, because plane strain is attained when 
the debond tips are close. Subsequent numerical 
results for the energy release rate will be seen to 
approach this asymptotic limit in the transition 
between steady-state and full debonding. 

The solution to the problem of isotropic elastic 
half-planes joined along the interface on v = 0, 
|.v| < AL/2 and loaded by a remote stress au = — a in 
the upper half-plane can be obtained using the 
complex variable method of elasticity. Similar 
solutions have been presented by Rice and Sih [6] and 
Erdogan [7]. The two Dundurs parameters, a and ß, 
measuring the elastic mismatch between the two 
half-planes enter the solution, as does the so-called 
oscillation index c defined in terms of ß by 

1  .   (l-ß £ = 2iin[TTß (3) 

In plane strain, the Dundurs parameters are given by 

//,(! -2v;)-M:(l -2v,) 

£, 
a = -= 

£,+ £: 

and    ß = 
2   /J,(1 -v2) + /i,(l - v.) 

(4) 

where £ = £/(l - v:) and /x = £/(2(l + v)) is the 
shear modulus. 

The tractions acting on the bonded portion of the 
interface are given by 

L^l^: + K^(±z^pAk,    (8) 

where   £:' = (1/2) (£,"' + £:').  This  result  for  G 
normalized by G,, in equation (1) gives 

G      n AL _ = _(l_a)_ (9) 

Note that G vanishes as the debond tips converge. 
The energy release rate is a strong function of the 
elastic mismatch a. but it is independent of ß. The 
mode measure i/r. defined as tan i/r = GPJO-X a distance 
r ahead of the tip, is obtained from equation (7) as 

,/, = 5 + cln(i (10) 

When ß = 0, the crack tip loading is mode II. with 

K2 = (1 - x)Cy/nAL/(4N/2)- Otherwise, the tip ex- 
periences mixed-mode conditions. 

3. THIN FILM DEBONDING 

3.1. Homogeneous films under uniform residual stress 

Various thin film debonding scenarios can be 
imagined. Figures 4(a)-(c) illustrate the three 
considered here. The simplest to represent is that 
depicted in Fig. 4(a) where the elastic energy release 
in a film with a uniform tensile pre-stress a drives two 
interface cracks converging upon each other from 
opposite directions.  The interface stress intensity 

+ 

Pre-Stressed Pre-Stressed 
and Cracked 

Cracked 

(a) Symmetric Debonds 

<7,: + iff]: = i(l -q)<7 

2^1 - ß2 JAV-Ax 
(5) 

For the crack with tip at x = —AL/2, stress intensity 
factors K, and K2 are defined such that on the 
interface a short distance r ahead of the tip [8] 

(6) 

For the converging debond crack advancing from the 
left in Fig. 3, the stress intensity factors are 

K, + itf; = 
i(l - afrJnAL (AL)-" 

4^2(1 - /P) 

Pre-Stressed, Cut 
and Cracked 

(b) Debond Approaching Film Edge 

J 
Cut and Cracked 

0 

cut line 

0     a               a 
-•-   —-1 .     _.J «- 

*  f.J 
Pre-Stressed 

and Crack« 
Cut 

»d 
Pre-Stressed Cut and Cracked 

(c) Debond Approaching Film/Substrate Edge 

(7)     Fig. 4. The scenarios for convergent debonding of thin films. 
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factors and the energy release rates are determined 
from the solution to the second of the two elasticity 
problems indicated on the right in Fig. 4(a). This 
problem is symmetric with respect to the v-axis. 
Primary attention, however, is directed towards the 
second scenario, Fig. 4(b). whereby a uniformly 
pre-stressed film is terminated at x = 0, exposing a 
free edge. An interface crack propagates from the left 
towards the free edge. Again, the second elasticity 
problem on the right in Fig. 4(b) needs to be solved 
as the crack converges upon the free edge. In this 
case, the compressive stress a acting on the right hand 
free edge of the film is an essential feature of the 
solution. Since only elastic behavior is considered, the 
sequence of cutting followed by interface cracking 
need not be treated as separate events. In the third 
scenario, Fig. 4(c), both the pre-stressed film and the 
substrate is terminated along x = 0. with the debond 
crack approaching the free edge. Results for this 
scenario have not been computed. They are expected 
to be similar to Fig. 4(b). especially when the 
substrate is stiff compared with the film. 

Results have been computed using a finite element 
model of the problems depicted in Fig. 4. The width 
of the model is taken to be 300 /, while the depth of 
the substrate is taken as 20;. The bottom of the 
substrate is constrained against vertical displacement 
but free to displace horizontally. A highly refined 
mesh is used in the vicinity of the crack tip. The 
./-integral is used to evaluate G. and \\i is computed 
by fitting theoretical crack tip opening and shear 
displacement amplitudes to the numerical values. An 
excellent check on the accuracy of the model is 
provided by the analytical results for the steady-state 
limit [equation (1)] which is approached at sufficiently 
large AL/t. The corresponding limit for the measure 
of mode mixity is \\i = cu(a), where a> is tabulated by 
Suo and Hutchinson [9]; in the absence of elastic 
mismatch, a)(0) = 52.1". Trends in G for four 
mismatch parameters a are presented in Fig. 5(a) for 
the second scenario described above. Apart from the 
curve for a = — 1 corresponding to the limit of a rigid 
substrate, the results have been computed with ß = 0. 
The companion results for the mode-mixity measure. 
ip, for the non-rigid substrates are displayed in 
Fig. 5(b). 

The debond begins to sense the edge of the film 
when the tip is within 5-20 times the film thickness, 
depending on the elastic mismatch. This distance is 
surprisingly large. It is this feature of the converging 
debond which allows graceful arrest and makes 
measurement of interface toughness feasible. Figure 
6(a) illustrates the approach to the asymptotic limit 
[equation (9)] for both symmetrically converging 
debonds and a debond converging on an edge for a 
mismatch where the film is compliant relative to the 
substrate, u = —1/2. For this mismatch, the asymp- 
totic result becomes accurate for the symmetrically 
convergent debonds when AL/r is about 1/2. but it 
somewhat overestimates the enerav release rate for a 
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Fig. 5. Energy release rate (a) and measure of mode mixity 
(b) for convergent debonds. 

debond converging on a free edge. A comparison 
with the asymptotic result over the full mismatch 
range is given in Fig. 6(b) at AL// = 2. for which 
there is essentially no difference between the 
numerical results for the two cases. Another 
important implication of Fig. 6 is that, when the 
remaining ligament is greater than about //2, the 
energy release rate of a symmetrically converging 
debond is essentially indistinguishable from that for 
a debond converging on a free edge the same distance 
away. In other words, the debond is unable to 
distinguish another debond from a free edge until it 
has approached to within a film thickness. 

Converging debond phenomena have been ob- 
served for films delaminating under nominally 
axisymmetric conditions with an external 
interface crack propagating inward debonding the 
remaining circular ligament [10]. As in the plane 
strain cases analysed here, the energy release rate 
approaches zero as the remaining ligament is 
debonded [11]. Gao's [12] result for the asymptotic 
limit when the ligament radius a becomes small 
compared to the film thickness is G = (1 — v)a:a/ 
[n(\ + v)E] for the case in which the film and 
substrate have no elastic mismatch and c is the 
equi-biaxial pre-stress. 
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3.2. Homogeneous films under non-uniform residual 
stress 

For completeness, results are derived which enable 
the determination of G and t/> for the case [Fig. 4(b)] 
in which a crack converges upon a cut edge when the 
film has a residual stress that varies through its 
thickness, a(y). Let a = l/t Jöff (>') dv be the average 
residual stress and M be the moment of distribution 
about the film midplane, i.e. M = joff(>') {y — tß) dy. 
The results presented in the previous sub-section 
apply for the contribution due to a. Results for G and 
i// for M with ö = 0 are given in Fig. 7 for several a 
with ß = 0. Note that a two-part composition of the 
solution [such as that in Fig. 4(b)] applies here also, 
but with M acting in the opposite sense (Fig. 7). The 
results apply when M>Q, such that the residual 
stress in the film is tensile at its top surface and 
compressive at the substrate interface. The debond 
crack is open; it would be closed when M < 0. In 
steady-state. 

1 - vf 6M2 

(11) 

(b) 

AL/t 

1   1  1  1 1   1   1   1 \  1  1 '    '    ' i   I   i   i   i   i 
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a = -0.5 L &L . 
I K ). - 

40 _ 
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0 ,  ,  1  , , ,  , 1 ,   ,    ,   

AL/t 

Fig. 7. Energy release rate (a) and measure of mode mixity 
(b) for converging debond for residual stress equivalent to 

a moment per unit length M. 

while \j/si = —n/2 + co(x) when M > 0, but 
i/(ss = — 7t/2 (mode II) when M < 0. The most notable 
feature brought out by Fig. 7, relative to the results 
for ö in Fig. 5, is the considerably smaller domain in 
which the interface crack departs from steady state. 

Under combined ä and M, G„ and i/^s are given by 

(b) 

AL/t = 2 

111(1111111 

- 

0.8 - 
Asymptotic Approximation (2.7) - 

0.6 ^jr    Symmetrically Converging 
^^            Debonds 

- 

0.4 /X.               Debond Converging 
/     ^\^       , on Free Edge - 

0.2 - 

(1 
- 
 i     .    .    . 

Fig. 6. Comparison of numerical results and asymptotic 
formula  (9) for two cases of convergent debonds:  (a) 

« = - 1/2; (b) AL// = 2. 

GMass = —-f.—  -y + —— (12) 

and 

tan i/^s = 
YIM cos co + ah2 sin a> 

— sJ\2M sin a> + ah1 cos co 
(13) 

When the crack is not in steady state, G cannot be 
obtained by an addition of the respective energy 
release rates (due to a and M). Then, G and t// must 
be obtained from a linear superposition of the stress 
intensity factors. When ß = 0, the respective contri- 
butions are obtained from Figs 5 or 7 using 
Ki = y/E-G cos \j> and K2 = -JE-G sin i>. Then, the 
desired results are generated using G = (K2, + IS)IE- 
and tan t// = K2/K,. 
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3.3. Two-layer films: A stressed metal layer on top of 
a compliant polymer layer 

It becomes increasingly difficult to present compre- 
hensive results for multi-layer delamination. Closed 
form results under steady-state conditions can be 
obtained for G. but not for ip. General results for 
converging debonds where the film is multi-layered 
are even harder to obtain, but a surprisingly accurate 
and simple formula for the energy release rate can be 
derived for a two-layer film comprised of a stiff 
pre-stressed layer attached to a compliant underlayer. 
We begin by presenting a limited set of finite element 
results for a two-layer film having individual layers 
representative of the epoxy-Ni system discussed in 
the Introduction, illustrated in Fig. 2 [3], The purpose 
of these experiments was to study debonding of 
polymer-polymer interfaces with systematically vary- 
ing interface chemistry. For this purpose, a self 
assembled monolayer (SAM) with either a CH; or a 
COOH end member, has been placed on a Si 
substrate. An epoxy layer of thickness t, = 1 /xm has 
been superposed. The top Ni layer, deposited by 
vapor deposition, is subject to an intrinsic residual 
tension of the order of 1 GPa. It is the elastic energy 
stored in this layer that drives the debond crack, 
when the layer thickness exceeds a critical value. The 
mechanics model analyzed numerically for this case 
is shown in the insert in Fig. 8. For the purpose of 
calculating G, the SAM is ignored because it is very 
thin. The interface lies between the epoxy layer (£,, 
Vi,t,) and the infinitely thick Si substrate (£:, v2). The 
Ni layer (£-, v3. /,) on top has a residual tension, a. 
The epoxy layer also supports a small residual 
tension, but the elastic energy stored in this layer is 
less than 1% of that in the Ni layer and can be 
ignored. 

The numerical results in Fig. 8 display the energy- 
release rate G as a function of ALIt, = {U — L)jt, for 
two values of £/£5 representative of the expected 
moduli ratio of an epoxy to Ni. The ratio £</£: Ni 
to silicon is about unity, the Poisson ratios have been 

o 
3 

— Finite Element Results 

-- (Tanh(AL/21))! 

/N 
/ E.'EJ .0.005 

E>        1!. 

E, 

. 1 
L                1 4L 
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0 25 50 75 100 125 150 
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Fig. 8. Energy release rate for convergent debonding for a 
bi-layer film where the top layer is subject to a residual stress 
c. with /,,'jt = 0.4 and the other parameters are specified in 

the text. 
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Fig. 9. Effect of modulus ratio £/£ on steady-state energy 
release rate of a bi-layer film with tJt, = 0.4 and only the 

top layer subject to residual tension. 

chosen as v, ^ 0.5. v: = 0.25 and v3 = 0.33, and the 
ratio of the two-layer thicknesses is taken to be 
hit, = 0.4, corresponding to the films in Fig. 2. In 
Fig. 8, G has been normalized by (1 — \j)a2t-./(2E,) 
which is slightly greater than the steady-state energy 
release rate G„, as can be seen in Fig. 9. Because the 
epoxy layer is so compliant compared with the Ni 
layer, almost all of the residual elastic energy stored 
in the Ni layer is released by the debonded two-layer 
film (subject to plane strain constraint in the 
out-of-plane direction). As the stiffness of layer # 1 
increases compared to that of layer # 3. more elastic 
energy remains in the debonded two-layer film. 
Nevertheless, even when £, = £,. Fig. 9 shows that 
G<, is only reduced by 25% below that estimated upon 
assuming that all the elastic energy in the top layer 
is released. 

The   result   derived   in   the   Appendix   for   the 
two-layer system shown in the insert in Fig. 8 is 

£ = tanh2nr where    / = 
E,t,t:. 

fr 
(14) 

with £, = £,/(l - v?) and /J, = £,/[2(l + v,)]. 
Equation (14) is expected to be accurate if the shear 
stiffness of layer I is small compared to the 
extensional stiffness of layer 3 such that / is large 
compared to the total thickness of the film. 
Predictions obtained from equation (14) for the two 
cases considered in Fig. 8 are included there as 
dashed line curves. The simple formula clearly 
provides a reasonably accurate description of the 
energy release rate of the converging debond. 

The curves in Fig. 8 for the debond converging on 
the free edge of the film show that G departs from the 
steady-state limit at large AL/t,, especially when the 
lower of the two layers is relatively compliant. For 
example, for £,/£; = 0.005. the interface crack first 
senses the free edge of the film when its tip is about 
75 /i from the edge. The experiments on the epoxy-Ni 
films, such as those in Fig. 2. show that such distances 
are characteristic of the lisament size. It is evident 
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from the limited set of results presented here that 
widely disparate moduli of the layers has a major 
effect on the behavior as the debond converges on the 
free edge. Another issue yet to be addressed is the role 
of plastic deformation in the polymer generated by 
the debond crack tip. The relevance of elastic analysis 
must be closely examined if the plastic zone becomes 
comparable in size to the layer thickness. 

4. FIBER DEBONDING 

The trend of energy release rate of a mode II 
debond spreading along a fiber and approaching a 
debond progressing in the opposite direction is shown 
in Fig. 1 (b). The focus is on the contribution due to 
the applied stress a. A transverse section axisymmet- 
ric cell model (Fig. 10) has a fiber radius R, and cell 
outer radius Ro, such that the volume fraction of the 
fibers is /= (R/Ro)2. The axial load carried by the 
composite is nRlc. Matrix cracks have formed and 
are spaced 2L0. Axisymmetric debond cracks spread 
along the fiber from the matrix cracks with current 
length L. The debonds are considered to be closed 
mode II cracks, consistent with the residual stresses 
present in the composite systems of interest. The 
elastic properties are taken to be isotropic with Et, vr, 
Em and vm as the elastic constants for the fiber and 
matrix, respectively. The boundary conditions on the 
lateral sides of the cell mimic the interaction between 
cellular units in a composite. The shear traction is 
zero and the radial displacement is constrained to be 
independent of the axial coordinate such that the 
average radial component of traction is zero. This 
boundary condition has been labeled Type II [4]. 

When the debond length L is larger than about one 
fiber radius and when AL = L0 — L is sufficiently 
large compared to R, the interface crack propagates 
in steady-state (G independent of L). (In this section 
the distance between the debond crack tips is taken 

2L0 

, Ef, v, 

l_ 
Tc 

Fig. 10. Cylindrical cell model of a uni-directional ceramic 
matrix composite with fiber-matrix debonds emerging from 
neighboring matrix cracks and converging towards each 

other. 
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Fig.   11.   Energy   release   rate   for   debond   crack   tips 
approaching each other along a fiber and comparison with 

the asymptotic result (18). 

to be 2AL rather than AL, as in Sections 2 and 3.) 
When there is no elastic mismatch between the fiber 
and matrix, G>s is given by equation (2). With elastic 
mismatch, 

Gss = c] 
a-R 

(15) 

where the algorithm for computing the coefficient 
c,(f, Ef/Em, vr, vm) is given by Hutchinson and Jensen 
[4]. On any debonded segment, the average stress in 
the fiber is at — 6 If. The asymptotic limit in Section 
2 is expected to apply when AL becomes sufficiently 
small compared to R. With <xf identified with —c, as 
well as E, and v, with the properties of the fiber, and 
E2 and v: with those of the matrix, from equation (8) 

G = 
(1 — %)ö2nAL 

(16) 

where   £f = £,/(l — vf).   Thus,   as   the   debonds 
converge, with AL/.R approaching zero, 

G_ 
Gss 

(1 — a)7i£m AL 
l6fcjEr     R ' 

When there is no elastic mismatch this reduces to 

(17) 

AL 
Gss     4(1 -/) R 

(18) 

A numerical evaluation of the coefficient multiplying 
AL/R in equation (17) shows that it depends weakly 
on the elastic mismatch, and thus equation (18) is a 
reasonably good approximation except for large 
mismatch. Specifically, for/= 0.4, the coefficient in 
equation (17) is about 7% above that in equation (18) 
when the fiber is twice as stiff as the matrix and 7% 
below when the matrix is twice as stiff as the fiber. 
Even when the corresponding stiffness ratios differ by 
a factor of five, the error in using equation (18) is only 
about 15%. 

Numerical results for G normalized by G„ in 
equation (15). computed by a finite element analysis, 
are presented in Fig. 11 as a function of the 
normalized half-spacing between the converging 
debond crack tips, AL/R. The calculations have been 
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Fig. 12. A CMC transversely separated after tensile loading in the 0/90 orientation up to 90% of the 
ultimate tensile strength. The protruberences represent the  regions of intact interface  as debond 

convergence that were ruptured upon transverse separation [13]. 

carried out with /= 0.4, vf = vm = 0.2, and Er,' 
Em — 1/2, 1 and 2. The numerical results validate 
the observation that G/G„ has little dependence on 
elastic mismatch. The variation of the coefficient of 
AL/R in equation (17) over the three values of 
Et/Em is negligible and not even observable for the 
asymptotic limit shown as the dashed line in 
Fig. 11. The numerical results show that the 
asymptotic limit (18) is an excellent approximation 
when  AL//? ^ 1/2,  and that steady state persists 

0.1   0.2 0.3  0.4 0.5   0.6 0.7  0.8 0.9  1.0 

Tensile Strain, E (%) 

Fig. 13. Tensile stress-strain curves showing various levels 
of  strain   hardening  that   reflects   the   role   of debond 

convergence [14]. 

until the debond tips are within about 2R. Thus, the 
converging debonds on a fiber do not begin to sense 
each other until they are much closer than those for 
thin films. 

There are two practical consequences of debond 
convergence. The first is that the debonds never 
intersect. Intact segments always exist midway 
between matrix cracks. This intact material becomes 
evident when a CMC is dissected parallel to the 
fibers, subsequent to tensile tests (Fig. 12). A periodic 
array of ridges is apparent on the dissected surface 
[13]. These ridges have previously been used to 
highlight matrix cracks and to measure crack 
densities. The second effect of convergence is on the 
effective strain hardening. As the debonds approach, 
the rate of inelastic straining decreases, resulting in an 
increase in the strain hardening coefficient. This 
behaviour is manifest in CMCs with low friction 
stress (SiC-CAS) as an upturn in the stress (Fig. 13) 
at larger strain levels. In CMCs with high friction 
(SiC-SiC), it results in a high strain-hardening rate 
throughout the inelastic deformation process 
(Fig. 13), concomitant with a larger matrix crack 
density [14]. It also rationalizes discrepancies found 
between measurements of constituent properties from 
hysteresis strains and simulations that neglect the 
convergence effect. 
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Let S(x) be the average stress acting parallel to the film 
in layer 3, with the origin of x taken as the center of the 
remaining ligament. Direct attention to the remaining 
ligament, —b<x<b. Let r(x) be the shear stress at the 
interface between layers 1 and 3, and let u(x) be the 
displacement of this interface in the x-direction. With 
()' = d()/dx, }' = u/t) is the average shear strain in layer 1 
and e = u is the extensional strain at the bottom of layer 
3. Equilibrium of layer 3 requires a = r/h. Using t = pty 
and 5 = Eii in this equilibrium equation, one obtains 
u" — Fu = 0 where / is defined in equation (14). The solution 
to this equation, subject to symmetry about x = 0 and 
6 = -trat i= —b (or x = +b), is 

P7 sin h(x//) 
"£j cos h {bliy 

(A.l) 

Let U be the displacement in the x-direction at the left end 
of the film at x = — (a + b), and denote the potential energy 
of the left half of the system by PE. (Because the two halves 
are equal, attention is directed only to the left half.) For 
prescribed a, one can readily show that PE= —{aUu. 
Approximate U as the sum of u(—b) from equation (A.l) 
and aajEi, representing contraction of the unattached 
segment lying to the left of x = —b: 

APPENDIX:   APPROXIMATE   ANALYSIS 
THE TWO-LAYER SYSTEM 

OF 

The two-layer system with the numbering and notation 
for the thicknesses and moduli shown in the insert of Fig. 8 
is adopted. We begin by considering the symmetric 
geometry shown farthest to the right in Fig. 4(a). Denote the 
total width of the remaining ligament by 2b and the length 
of each crack by a. The pre-stress in layer 3 is a. Analysis 
of the problem on the right in Fig. 4(a) will provide the 
energy release rate, as previously discussed, with a acting in 
the sense shown (a > 0). Layer 1 has no pre-stress. Let 
Ei = £3/(l — V3) be the plane strain tensile modulus of layer 
3, while /ii = £i/(2(l + v,)) is the shear modulus of layer 1. 
If the shear stiffness of layer 1 is small compared to the 
tensile stiffness of layer 3, the length of the shear lag zone 
through which the film stress is transferred to the substrate 
will be large compared to the total film thickness. We 
capitalize on this feature and employ a one-dimensional 
analysis as follows. 

U = - a + I tan h (A.2) 

The effect of layer 1 on the contraction of the unattached 
segment is neglected, consistent with the assumption that 
layer 3 is much stiffer than layer 1. Then, from 

one obtains 

dPE    1   , dU 
G=—da- = 2<!h'Äa'' 

c: = tanh" 7 

(A.3) 

(A.4) 

where Gis = a2tj/(2E}). The final step in arriving at equation 
(14) is to identify AL (defined in the insert in Fig. 8) with 
2b, in accordance with the discussion in the body of the 
paper to the effect that the tip can hardly distinguish a free 
edge from another debond crack. 
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Abstract—This paper develops a model that incorporates damage band evolution at three levels: 
(i) at the mechanism level, the damage mechanisms, such as diffusive void growth and fatigue 
cracks, determine the damage growth rate; (ii) at an intermediate level, the damage band is modeled 
as springs connecting undamaged materials, and the spring constants change as damage develops; 
(iii) at the continuum level, the damage band is modeled as an array of dislocations to satisfy 
equilibrium. We demonstrate this model with an example of a band of microcracks subject to remote 
tensile cyclic stress. It is observed that damage rapidly grows at the weakest regions in the band, 
and a macroscopic crack nucleates while the overall damage level is still very low. The model shows 
that there exists a critical number of cycles for macroscopic crack nucleation, Nnmhat]o„, which 
depends on materials as well as the amplitude of applied cyclic stress. This critical number of cycles 
is insensitive to the size of damage cluster, but decreases rapidly as the local excess of damage 
increases. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Engineering materials exhibit time-dependent degradation and failure under creep, stress- 
corrosive cracking, or cyclic loading conditions. Although failure mechanisms vary in 
different materials, they all display one common characteristic: damage originates from 
localized regions and evolves to a macroscopic crack. The present paper investigates the 
evolution of localized damage bands over time/cycles, and the relation between micro- 
damage and macroscopic nucleation of defects. Following an earlier attempt (Ye, 1992), 
the model includes three levels—the mechanism level, the intermediate level, and the 
continuum level, (i) At a sufficiently fine resolution, damage processes such as power law 
creep voids, diffusive voids, shear fatigue cracks are incorporated to determine the damage 
growth rate, (ii) At an intermediate level, localized damage bands are modeled as springs 
connecting undamaged materials. The spring compliances are nonuniform, increasing as 
the damage evolves, (iii) At the continuum level, the localized damage band, growing in an 
otherwise undamaged material, is modeled as an array of dislocations. The equilibrium 
provides the governing equation for the local stress. The model estimates the critical time 
or cycle number at which a macroscopic defect nucleates. For simplicity, the model is 
limited to two dimensional analysis. 
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t      t      t      t       t       t 

HV localized damage 

-H > K 

band 

undamaged material 

\      \      \      \      \      \ 
Fig. 1. A localized damage band, where b is the average spacing between microscalc damage, and 

D is the averaee size of microscale damage. 

2. GENERAL DESCRIPTION OF THE MODEL 

Figure 1 shows an example of damage band. It is a weak region in an otherwise elastic 
material, and is the potential band for deformation localization. The thickness of the band 
is much smaller than the characteristic length of the sample. The material is assumed to be 
subject to remote uniform tensile stress c. Other types of loading can be analyzed similarly, 
such as shear fatigue (Ye, 1992) and thermal cycling (Huang et al., 1997). Three levels 
discussed in the previous section are prescribed in the following. 

2.1. Mechanism level 
Let co be the nondimensional damage parameter, such as the normalized microcrack 

size or void size. The limit a> = 0 corresponds to the undamaged state in the material. Its 
growth rate, in general, is governed by the current damage state and the local stress a, i.e., 

dca      1 - / a 
(1) 

where t is the time or cycle number, r0 is a reference time or cycle number, a0 is a reference 
stress, and function Fdepends on the specific damage mechanism in the material. For many 
damage mechanisms, the damage evolution rate can be related to the local stress a through 
a power law 

0(0     X ve  \(a 
— = —F((o)[ — 
dt     t0       

yU0 

(2) 

where the power n is a material property, and the nondimensional function F(co) represents 
the damage growth rate when the local stress reaches the reference stress. In general, F(co) 
is a monotonically increasing function of w since the damage growth rate increases with 
the damage level. 

2.2. Intermediate level 
Beyond the elastic stretch in the undamaged material, there is an additional stretch 

across the band, S, due to localized damage. The additional stretch <5 is related to the local 
stress a through a bridging law, 
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Trz{i'm) (3) 

where <50 is a material length, and the function C can be obtained from a micromechanics 
model for the specific damage mechanism in the material. In cases such as in stress corrosion 
cracking (Cao et al, 1987) or shear fatigue (Ye, 1992), the stretch is linear in the stress so 
that eqn (3) can be written as 

S a 
T-=C(«)- (4) 

where C(w) is the linear spring compliance, which is also a monotonically increasing 
function of co since the spring is more compliant as the damage level increases. 

2.3. Continuum level 
The localization band can be regarded as an array of dislocations. The local stress in 

the band, a, is caused by the remote uniform stress, ä, and by the dislocations (Rice, 1968): 

i\    -    E dd(0  d; 
-^r1-— (5) ,   oc,   x-c, 

where E is Young's modulus E for plane stress or Ej{\ - v2) for plane strain, v is Poisson's 
ratio, and x is the coordinate in the direction of the band. 

The distribution of the damage state co, the additional stretch <5, and the local stress a 
are governed by the differential and integral equations in eqns (2), (4) and (5). For a given 
initial damage distribution, these governing equations can be solved numerically to evolve 
the damage distribution as time or cycle increases. 

3. MICROCRACK DAMAGE IN FATIGUE AND THE NUCLEATION OF A 
MACROSCOPIC CRACK 

The model outlined in the previous section is demonstrated here through an example 
of microcracks in a localized band subjected to remote tensile cyclic stress, Aa. As shown 
in Fig. 1, the average spacing between microcracks is b, and the average size of microcracks 
is D. The damage parameter co is denned by 

D 
»-y      . (6) 

The limit w - 0 corresponds to an undamaged material, while co = 1 represents the critical 
state when microcracks coalesce and a macroscopic crack nucleates. 

3.1. Mechanism level: damage evolution rate 
The damage mechanism in this example is the fatigue growth of microcracks. There 

have been extensive studies on small fatigue cracks (e.g., Suresh and Ritchie, 1984, also 
Suresh, 1991, for detailed discussion and documentation). The fatigue growth rate of 
microcracks is influenced by many factors, such as microstructures (e.g., Pearson, 1975, 
Lankford, 1982, Tanaka et al, 1983), T-stress level, plastic zone size, crack closure effect 
around tips of microcracks (e.g., Allen and Sinclair, 1982, Suresh and Ritchie, 1984, Fleck 
and Newmann, 1988), and environmental effect (e.g., Gangloff, 1981). Dowling (1977) 
suggested that the cyclic /-integral AJ provides a measure of the driving force for fatigue 
growth of small cracks, and the growth rate is approximately proportional to A/" (m is a 
material property). Though the following analysis can be applied to any laws governing 
fatigue growth of microcracks, Paris law is used here for simplicity, 
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where N is the number of cycles, ß and n are material properties, and AKis the cyclic stress 
intensity factor at a microcrack tip. For the configuration in Fig. 1, AK is related to the 
cyclic local stress Aa by (see Appendix A for details) 

AK= Ac /fctan^co (8) 

where b is the average spacing between microcracks in the band. The damage growth rate 
can then be found as 

where 

F(co) = (tan^w)   . (10) 

3.2. Intermediate level: bridging law 
Due to the presence of microcracks, there is an additional cyclic stretch across the 

band, A<5, beyond the uniform stretch associated with undamaged materials. This additional 
cyclic stretch comes from the cyclic opening of microcracks in the band. A micromechanics 
model is described in Appendix A, and A<5 is related to the cyclic local stress ACT by the 
bridging law 

A<5 = -4ln J-^-.Aff. (11) 
n E (n 

cos I -co 

It can be rewritten as 

where 

A<5      „,  SA(7 .... 
 = C(co)—                                                    (12) 

C(eo)=-In -. r. (13) 
7i In   x 

cos I -co 

For an undamaged material (&> = 0), C(w) is zero such that there is no additional cyclic 
stretch. In the other limit when microcracks start to coalesce (co - 1), C(co) approaches to 
infinity so that the local stress is zero and the spring is completely broken. Therefore, there 
is no bridging at this moment (<w = 1) and a macroscopic crack is nucleated. 
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3.3. Continuum level: stress equilibrium 
For a uniform remote cyclic stress ACT, the stress equilibrium eqn (5) takes the form 

ACT(X) = ACT- 
E_ 
An 

oA«5(c)    dc 
öc "x-r (14) 

For a given damage distribution co(x), eqns (12) and (14) give a linear integral equation 
for ACT (or A<5). 

3.4. Normalization 
An important equivalence between the amplitude of applied cyclic stress ACT and 

number of cycles N can be established by the following normalization: 

N ACT  .       A(5 x 
N = ,CT = —— ,o = ——,x =—. ß-ibi-W)^eyn ACT' M'        b 

E 

(15) 

The governing eqns (9), (12) and (14) then become 

ou> 

5' = C((o)o' 

CT' = 1- 
An 

dö'    d<T 
M''X-Z' 

(16a) 

(16b)) 

(16c) 

It is evident that the number of cycles TV appears together with the amplitude of remote 
cyclic stress (ACT)" through the normalized cycle number N'. Therefore, a small amplitude 
of applied cyclic stress ACT is equivalent to a large number of cycles, and vice versa. This is 
similar to the S-N curve in the empirical fatigue design. (This conclusion results from the 
Paris law, and may not hold for non-power law damage growth rate.) 

At a given cycle N', the damage distribution co(x') is known. The combination of eqns 
(16b) and (16c) solve the stress distribution a' (x'), and then eqn (16a) updates the damage 
distribution co(x') for an increment of cycle AN'. The procedure then repeats for the next 
cycle number, N' + AN'. 

3.5. Initial distribution of damage in the band 
The damage parameter w is considered as a continuum variable in the continuum 

analysis. This is rather similar to the Gurson's (1975) model for a voided, dilating material, 
which was derived from a cell analysis, but has been successfully applied in the continuum 
theory. Following Ohno and Hutchinson (1984) and Huang and Hutchinson (1989), the 
following initial damage distribution is taken to represent a cluster of damage in the band 

co(x) =<waverage + (a>ir -co,. ;e)exp 
2\Yb 

(17) 

where coaverage and comax are the average and maximum damage level in the band, and 21b 
represents the size of the damage cluster. The nondimensional parameter a)max — ««average and 
2). characterize the excess of damage in the band and ratio of the size of damage cluster to 
average microcrack spacing, respectively. 
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3.6. Results and discussions 
Details of the numerical method to solve governing eqn (16) are given in Appendix B. 

A value of power n = 2 is fixed in the present study. Results in Figs 2-4 are for initial damage 
parameters a>avt.ragc, = 0.01,a)max = 0.10,and2/ = 1. This represents a highly localized cluster 
of damage that has the size of approximately b, and the excess of damage in the band is 
much larger than the average damage level. The initial damage profile is shown in Fig. 2, 
vs the normalized distance in the band, x/b. As the cycle number increases, the damage 
distribution evolves very nonuniformly in the band. Damage at the center (x — 0) increases 
significantly faster than the average level (Fig. 2). For example, a increases from 0.1 to 1 
at the center while the average co is changed by approximately 0.1. Therefore, damage 
evolution is rather concentrated at the weakest regions in the material. This is similar to 
the deformation localization in voided ductile materials (Ohno and Hutchinson, 1984, 
Huang and Hutchinson, 1989). 

The distributions of additional stretch Ö and local stress a are shown in Figs 3 and 4, 
respectively. It is observed that the evolutions of S and c are also very concentrated. As the 
damage parameter co at the center approaches one, the corresponding additional stretch is 
much larger than the average level, and the local stress approaches zero such that bridging 
effect starts to disappear at the center. The number of cycles at this moment is critical 
because microcracks start to coalesce and a macroscopic crack is to be nucleated. This 
critical number of cycles for crack nucleation, denoted by Nnucklüon, characterizes the 
maximum number of cycles the material can sustain before a macroscopic crack appears. 
It depends on the material, the amplitude of applied cyclic stress A<r, as well as the initial 
distribution of damage in the band. For initial damage parameters given above, this critical 
number is iVnudcation = 1.503^" "61 -<-/2)(Aff) — (Fig. 2). 

\                                       ,.        "            — 1503 
\                                 /           1-5 

0.8 \          /          / 1-395 

\ \ /        y 1205 

0.6 

\   \ Jt             y 0915 

0.4 ~"\ VA\      / °455 

\ A\\         / °-° 
0.2 

,     ■ 1 ;  

0.0 1.0 2.0 3.0 4.0 

x/b 
Fig. 2. Damage distribution, tu, in the band for several normalized number of cycles. ßb'"2)~' (A<f)"A', 
where the average initial damage level cuavc„8c = 0.01, excess of damage in the band u>m„ — 
("avtr-agt = 0.09, normalized size of the damage cluster 2Ä = 1, power n = 2. and b is the average 
spacing between microcracks. The number of cycles when u> reaches one is the critical number 

cycle for crack nucleation. A'„„ci„,i0„. 
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Fig. 3. The distribution of normalized additional stretch across the band for several number of 
cycles, ßb{"IT>~\&5)"N, where the average initial damage level a)avtraE, = 0.01, excess of damage in 
the band <u„„-ca„ : 0.09, normalized size of the damage cluster 2/. 

the average spacing between microcracks. 
1, power K = 2, and b is 
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Fig. 4. The distribution of normalized stress in the band for several number of cycles, ßblj,m~' (A5)"N, 
where the average initial damage level a)avtragc = 0.01, excess of damage in the band cümax — 
aWrage = 0.09, normalized size of the damage cluster 2/. = 1, power n = 2, and b is the average 

spacing between microcracks. 
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Fig. 5. The normalized critical number of cycles for crack nucleation. ßb" 2]~ '(Aff)"A'„ucfc„l0„. vs the 
normalized size of damage cluster. 2/.. for the average initial damage level cyJVC„fe = 0.01. excess of 

damage in the band <yma,-aiaxcraFC = 0.09. and power n = 2. 
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Fig. 6. The normalized critical number of cycles for crack nucleation, ßb'r2)~' (Ac)"Nmd„,,m. vs the 
excess of damage in the band. &>„„ - coavmfr. for a small damage cluster (2/. = 1) as well as a large 

one (2/. = 10), where the average initial damage level tua«„fc = 0.01. and power n = 2. 

The normalized critical number of cycles for crack nucleation, ßb(" :2)~\M)"NnuclcMian, is 
shown in Fig. 5 vs the normalized cluster size 2). for <wmax = 0.10, cüavcragc = 0.01 and power 
n = 2. As the cluster size increases, the critical number of cycles rapidly approaches to an 
asymptote, approximately 1.2/?~' b]~":2(Ac)~". Therefore, only small damage clusters 
whose sizes are less than twice the microcrack spacing can achieve a significant increase in 
the critical numbers of cycles (Fig. 5), hence to improve the fatigue life of the material. 

The normalized critical number of cycles for crack nucleation. ^ft'" 2)"'(Aö:)"A^nudca,ion, 
is shown in Fig. 6„ vs the excess damage in the band. cümax — coavcrafC. for a small cluster 
(2/. = 1) as well as a large one (2/. = 10). It is clearly observed that the critical number of 
cycles for crack nucleation is rather insensitive to the size of the damage cluster since two 
curves in Fig. 6 are very close. However, the critical number of cycles is reduced significantly 
as the excess of damage in the band increases. One can conclude that the nucleation of a 
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4. CONCLUDING REMARKS 

Suresh 1991K0110W errn rir rfT ^ M ^ gI"°Wth °f mic™nSs, see . ' '^^ I01]ows eqn (1) rather than the power law in ean n\ ThP nnni™»,  u -J ■ 
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APPENDIX A 

The additional stretch across the band. <5, comes from the opening of microcracks. By averaging the crack 
opening displacement in the band (Fig. 1), one has 

C' (Al) 

where 6opc„ is the crack opening displacement, and can be estimated using a configuration of periodically distributed 
cracks as (Tada el al„ 1985) 

nx 
cos — 

'--S^-'-i, forW4 (A2) 
C0S

2* 

The substitution of eqn (A2) into eqn (Al) leads to eqn (11). 
For periodically distributed microcracks in Fig. 1, the stress intensity factor is (Tada et at.. 1985) 

K=cjblan7^ (A3) 

which becomes the same as eqn (8) by changing K and o to AK and Ac respectively. 

APPENDIX B 

From symmetry a(-x) = a(x) and d(-x) = S(x), eqns (16b) and (16c) can be rearranged to 

*W=,__L|    _^—^dc   for*>0. (Bl) fx    i    es 
lJo x- — ?- '"> C(w) 2nJo x-_^ 

By the following change of variables, the interval (0. + oo) for x and c is transformed to (- 1, 1) for u and ; 

1+w  .     1 + / ,R,, 
x = - ,?=-—-■ (B2) 

1—u 1 —/ 

For each given damage profile w(x), the additional stretch S is expanded in terms of Chebyshev polynomial 

*(«)=Iflyr;.,(«) (B3) 

where Tf is the Chebyshev polynomial of degree j, and a, is the coefficient to be determined. By the standard 
collocation method, eqn (Bl) becomes M linear algebraic equations and can be solved numerically. 

Equation (16a) is an ordinary differential equation for the damage parameter w. It can be solved by the 
Runge-Kutta method if the local stress distribution rs(x) is known. Therefore, the numerical procedures to obtain 
the damaae state to. local stress a, and additional stretch S are 
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I.    For the initial damage distribution ai(x) in eqn (17), solve the integral eqn (Bl) by the expansion [eqn 
(B3)] and collocation method in order to obtain the distribution of the additional stretch S(x) and local 
stress o(x) in the band; 

III.   For the known local stress distribution <r(x), solve eqn (16a) by the Runge-Kutta method and get the 
new damage distribution co(,x) at the next cycle; 

III. For the new damage distribution co(x), solve eqn (Bl) in order to get the corresponding additional 
stretch ö(x) and local stress a(x) for this cycle; 

IV. Repeat steps II and III until the maximum value of co in the band reaches 1. The corresponding number 
of cycles is the critical cycle number for crack nucleation. 
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Abstract 

The effect of carbon on the interfacial fracture of gold-sapphire 
bonds is quantified by partitioning the measured fracture energy 
into the works of adhesion and plastic dissipation. The variation in 
each quantity with interfacial carbon is independently measured. 
The strong correlation between interfacial adhesion and plastic 
dissipation suggests synergistic coupling between crack-tip bond 
rupture and the surrounding plastic deformation in the metal. 
Possible origins of the observed sensitivity of adhesion to carbon 
heat treatment are discussed. 

I.  Introduction 

With an increasing number of applications requiring metal-ceramic bonds, there 
is a compelling need to understand the strong link between bond reliability and 
interfacial properties [1-4]. However, the thermodynamics and micromechanics of 
metal-ceramic interfacial fracture are still, for the most part, underdeveloped. One 
notable gap is the lack of a quantitative correlation between atomic-scale adhesion and 
macroscopic bond integrity. 

Adhesion is a thermodynamic parameter characterizing the state of the interface 
and respective free surfaces, whereas macroscopic performance metrics such as strength 
and toughness include phenomena occurring in the bulk materials, particularly plastic 
dissipation in the metal. Because plasticity and adhesion are dependent quantities, it is 
impossible to fundamentally understand the macroscopic, plasticity-dominated 
response of a metal-ceramic bond without consideration of interfacial adhesion. Yet 
despite substantial experimental strength and toughness data for metal-ceramic systems 
(e.g., [5]), predictive models of macroscopic properties as a function of the intrinsic 
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interfacial parameters are lacking. The present work addresses this need by 
establishing definitive experimental evidence that an interfacial impurity (i.e., carbon) 
can affect the metal-ceramic fracture energy through a modification of the interfacial 
adhesion. 

Experimental evidence supports an adhesion-toughness correlation for grain- 
boundary segregation in homogeneous metals [2]. Analogous results for metal-ceramic 
interfaces are sparse. Elssner et al. [6] evaluated the influence of silver, sulfur, and 
titanium impurities on the fracture energy of niobium-sapphire bicrystals and 
Gangopadhyay and Wynblatt [7] studied the effects of interfacial nickel segregant on 
the interfacial and surface energies of lead and gold sessile drops on graphite. 
Otherwise, there are only qualitative correlations between bond strength and work of 
adhesion [1,8-lS],1 as well as between macroscopic interfacial strength and fracture 
resistance [16]. In general, systems that form strong bonds, such as aluminum-alumina, 
exhibit fracture behavior dictated by the bulk properties of the adjoining materials, 
namely ductile fracture in the metal or cleavage fracture in the ceramic. More weakly 
bonded systems, such as gold-alumina, generally fracture by an interfacial debonding 
mechanism accompanied by plasticity in the metal. 

Ideally brittle interfacial fracture entails the rupture of atomic bonds, whence the 
fracture energy, T, is simply the work of creating two new surfaces from an interface 
[18]. In this idealized regime (Griffith fracture), T = Wad, where Wld is the 
thermodynamic work of adhesion of the interface [Wad = (Ym + Yc)~Ymc]- However, 
even apparently brittle fracture is accompanied by a finite amount of plastic dissipation 
(Fig. 1), Wp, where Wp is the irreversible (or plastic) work [19]. The fracture resistance is 
therefore: 

r = wad+wp (i) 

Eqn. 1 does not emphasize the intricate interdependence of the plastic work on the 
work of adhesion. In fact, Wp is not an independent material parameter but rather a 
function of Wad [20]. The crack-tip separation process (characterized by Wad) is highly 
non-linearly coupled to the applied loading via the plastic zone surrounding the crack 
tip [21]. Accordingly, small variations in the work of adhesion - as might result from 
interfacial segregation - profoundly affect the work of fracture. It is precisely this 
phenomenon that we presently seek to establish and quantify, using the gold-sapphire 
system as a model and measuring the effects of interfacial carbon on the works of 
adhesion and fracture, respectively. 

1 In reference 14, the correlation was made between strength and the melting temperature of the metal, 
which scales with the metal surface energy [10,17] and hence the work of adhesion. In references 12 and 
13, the correlation was made between strength and free energy of oxide formation of the metal, which in 
turn scales with the work of adhesion [15]. 
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II.  The Gold-Sapphire:Carbon System 
To isolate the fundamental characteristics of interfacial fracture from such 

secondary contributions as interface roughness or variations in bulk component 
properties, the metal-ceramic system should form no reaction interphases and, at least 
nominally, fracture by an interfacial debonding mechanism. Gold and sapphire have 
been shown to form no mutual reaction products upon solid-state bonding, resulting in 
an atomically sharp, highly planar interface between the metal and ceramic phases [22]. 
Furthermore, previous studies using the gold-sapphire system [22,23] have confirmed 
that fracture nominally proceeds by interfacial debonding'(see Fig. 1). 

To modify adhesion in the gold-sapphire system without affecting changes in the 
constitutive properties of the metal, the interfacial species must be virtually insoluble in 
the gold at room temperature. Further, the dopant must be interfacially active, in the 
sense that solute atoms reside at the interface in preference to the respective bulk 
components (whether the solute acts as a thermodynamic segregant or a second-phase 
precipitate). Carbon is ideally suited to be the interfacial modifier in the gold-sapphire 
system. Apart from its ubiquity as a common impurity in a broad range of materials 
systems and processing conditions, carbon exhibits moderate solubility in gold very 
near the melting temperature of the metal, while its solubility drops dramatically with 
decreasing temperature (Fig. 2 [24]). Because low-solubility solutes tend to segregate 
more strongly than those with high solubility [25,26], carbon is a likely candidate for 
altering interfacial adhesion. At the same time, the negligible room-temperature 
solubility of carbon in gold minimizes any impact on the bulk constitutive properties of 
the metal. Due to the refractory nature of sapphire and on the basis of available kinetic 
and thermodynamic data [27,28], dissolution of carbon or formation of reaction 
products in the sapphire-carbon system is not expected at the temperatures required for 
gold-sapphire diffusion bonding. 

Table I lists the surface free energies of gold, sapphire, and carbon. For 
convenience, all solid surface energies are calculated at 1000°C using the available 
surface entropy terms, dySv/dT. Some of the relevant room-temperature bulk 
properties of gold and sapphire are compiled in Table H 

III. Preparation of Sapphire-Gold-Sapphire Sandwiches 
Specimen preparation consisted of three steps: 1) cleaning and annealing of the 

respective bulk materials, 2) creating sapphire-gold-sapphire sandwiches, and 3) heat 
treating the sandwiches to provide the desired interfacial properties. Details of each 
procedure are outlined below. 

Single-crystal sapphire substrates2 were subjected to a series of chemical cleaning 
and annealing steps to degrease the surface, oxidize and remove superficial metallic 
contaminants, and anneal out structural defects [29]. The substrates were degreased in 

2 HEMLITE (0001) sapphire bar stock, 80-50 finish, Crystal Systems, Salem, MA. 
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trichloroethylene (TCE), followed by acetone (ACE), isopropyl alcohol (IPA) and a de- 
ionized water (DI) rinse. Degreased samples were washed in NaOH, piranha-etched 
(1H202:1H2SC>4) and rinsed in DI.3 The substrates were subsequently oxygen-plasma 
etched, washed in hydrofluoric acid (HF), rinsed in DI, and nitrogen-gas dried. The 
clean sapphires were covered with high-purity alumina furniture to prevent dust 
contamination and air-annealed 2-4 hr. at 1300°C. 

For the preliminary tests described in Section IV, gold foil constituted the 
majority of the metal volume. In subsequent investigations, including all of the fracture 
toughness evaluations described in Section V, the entire gold layer was deposited by 
electron-beam evaporation. In the foil technique, the clean substrates were coated 
with a thin layer of evaporated gold (Fig. 3a). The gold, typically 0.5 \im thick, was 
intended to provide a nominally pure metal-sapphire interface. The gold-sapphire 
bond was created by cold-pressing (at 11 MPa) a degreased and annealed 25 (im thick 
gold foil4 sandwiched between the two sapphire substrates, as shown in Fig. 3b. 
Annealing of the heavily worked foils (3 hours at 1000°C in air) was intended to oxidize 
superficial organic contaminants and reduce the yield strength to aid the initial stages 
of the bonding process [30]. 

The foil-sandwiching procedure resulted in bonds having reasonably good 
mechanical integrity; however, the nominal purity of the foil was inferior to that of 
typical evaporation sources and use of the foil introduced additional handling 
procedures susceptible to further contamination. In response to these concerns, the foil 
was eliminated in the fracture studies (Section V) and the entire gold thickness (10-15 
|xm) was electron-beam evaporated onto the sapphire substrates (half of the total gold 
thickness on each substrate). The bond was then created by mating the freshly 
evaporated gold surfaces immediately after removing from the evaporation chamber. 
Aside from using higher purity gold,5 the procedure also reduced (from four to two) the 
number of gold surfaces exposed to the ambient prior to consolidation. 

After mechanical sandwiching, all bonds were heat treated in ambient air at 
approximately 98% of the homologous temperature of gold (1030-1050°C). A 
distributed pressure of approximately 10 kPa aided bonding. The duration of the 
bonding treatment ranged from 24 to 72 hours, with no noticeable changes in the 
microstructure or interfacial mechanical properties observed beyond the first 24 hours. 

After bonding, the sandwiches were cut into bars for mechanical testing and 
machined to the specifications of the test geometries. These specimens were either 
tested as-bonded (subsequently designated heat treatment "A") or subjected to various 
auxiliary heat treatments prior to testing.  Oxidizing- and reducing-atmosphere post- 

3 These and subsequent cleaning steps were performed using Teflon beakers to avoid recontamination 
with silica. 
4 99.95% purity, Johnson Matthey, Ward Hill, MA. 
5 99.999% purity slugs, Williams Advanced Materials, Buffalo, NY. 
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bonding heat treatments were intended to modify the interfacial chemistry and 
corresponding mechanical properties. Oxygen heat treatments ("O") were carried out in 
an alumina tube furnace with the specimens located directly on a clean alumina 
substrate. An oxygen flow rate of -10 cc/min was used, and the gas was passed 
through a desiccating column prior to introduction into the furnace. 

The reducing treatments involved either heating in a graphite-fixtured vacuum 
furnace (heat treatment "V") or encapsulation in carbon-loaded ampoules (heat 
treatment "C"). In the former, the as-bonded sandwiches were heat treated 48 hours at 
1020°C between the graphite rams of a vacuum hot-press. In the latter, the bonded 
sandwiches were encapsulated (in ambient atmosphere) inside a quartz ampoule filled 
with fine graphite powder (Fig. 3c). The ampoule was heated to temperatures slightly 
below those used for diffusion bonding (2-8 hours at 1000-1020°C), allowing carbon to 
oxidize and be transported to and along the gold-sapphire interface. 

Examination of fracture surfaces by SEM (Fig. 4a) and AES (Fig. 4b) reveals the 
presence of carbon at the gold-sapphire interfaces of carbon-treated bonds. As the 
series of micrographs in Fig. 5 shows, prolonged heat treatment in a carbon-rich 
environment led to formation of cusp-shaped morphological instabilities along the gold 
grain boundaries, especially along the sample edges. Ultimately, these instabilities 
resulted in complete solid-state de-wetting of the gold from the sapphire. For all of the 
studies described below, the duration of the carbon heat treatment was deliberately 
adjusted to preclude such macroscopic de-wetting of the gold. 

IV.  Adhesion Measurements 
Extensive interfacial porosity was generally observed subsequent to bonding. 

The pores are believed to originate from air trapped in the gold during the initial 
consolidation of the sandwich, that migrate to the gold-sapphire interface during 
subsequent heat treatment. (Coalescence of vacancies generated during evaporation 
was discounted due to the existence of extensive porosity along gold grain boundaries.) 

Fortuitously, carbon heat treatment was found to be accompanied by a drastic 
change in the interfacial pore morphology, providing not only a convenient indicator of 
carbon, but also a means of measuring the interfacial work of adhesion (Fig. 6). The 
transition from highly faceted pores in the as-bonded samples to nearly isotropic pores 
after introduction of carbon is attributed to changes in the gold-sapphire interfacial 
surface energies (as indicated by the Wulff plot). In some of the more extreme cases, 
carbon precipitates were apparent on the pore surfaces and along the interface. The 
work of adhesion, Wad, was calculated from the equilibrium contact angle between the 
metal and ceramic phases, 6, and surface energy of the metal, ymv/ via the Young- 
Dupre relation: 

Wad=Tmv(l + cos6) (2) 
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allowing the effect of carbon heat treatment on adhesion to be quantified through the 
corresponding change in interfacial contact angle.6 To measure G, one of the sapphire 
substrates was carefully removed by stress-corroding 'the interface in water, thus 
revealing the gold surface. Contact angles were measured on these fracture surfaces 
using atomic force microscopy (AFM) by taking profile scans across several pores (Fig. 
7). The contact angle histograms of Figure 8 reveal a definitive increase in contact angle 
- approximately 20° - resulting from carbon heat treatment. 

Combining Eqn. 2 with the contact angle data of Fig. 8 and the gold surface 
energy from Table I, the gold-sapphire work of adhesion is seen to decrease by a factor 
of two, from 0.6 to 0.3 J/m2, upon heat treatment in carbon. In calculating the adhesion, 
the surface energy of gold is assumed to be unaffected by the presence of carbon [7]. 

V.  Fracture Measurements 

The double-cleavage drilled compression (DCDC) specimen geometry, Fig. 9, 
was used to determine gold-sapphire interfacial fracture energies [33,34]. The DCDC 
test provides a stable, mode-I crack over a large range of crack extension, while 
allowing in situ observation of the fracture process through the sapphire substrates. 
Having the remote phase angle of loading near zero also simplifies correlation between 
existing numerical and analytical models, avoiding complications associated with shear 
tractions in the crack wake. 

For the present studies, W = 2 mm, H = 4 mm, L = 40 mm, and R = 1 mm. On the 
basis of dimensional analysis, the energy release rate, b, scales as: 

*=*£«**). 0) 
where a is the applied compressive stress and E' is the plane strain Young's modulus 
[E'= E/(l- v ), v is Poisson's ratio]. The function f was numerically determined for the 
present geometry using finite elements analysis [33]. In the range ^ < f < 15, f can be 
approximated as: 

f(|,f)=M0.235f-0.259)fJ2 (4) 

Compressive load was applied through a servo-hydraulic test frame.7 During 
the course of the test, the extension of the crack was monitored, and Eqns. 3-4 used to 

6 Strictly speaking, Eqn. 2 is invalid if crystallographic facetting occurs. An alternate technique based on 
aspect ratio measurements uses the shape of equilibrated crystals to uniquely define the work of adhesion 
[31,32]. However, because preliminary results showed general agreement between works of adhesion 
determined using contact angle and aspect ratio measurements, the former measure is retained for its 
relative simplicity. 
7 MTS 810, Material Test System, Minneapolis, MN. 
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correlate the applied load to the critical energy release rate. Platen alignment was 
maintained using a hemisphere-in-socket tungsten carbide fixture, while Teflon tape 
was used to facilitate sliding at the specimen-platen interface. The interfacial fracture 
process was monitored using a tele-microscope8 connected to a video recorder and 
monitor. The microscope was mounted on a motorized xyz stage, with the z-axis 
(parallel to the loading and crack extension direction) connected to a linear variable 
differential transformer (LVDT) for position tracking. The load, crosshead 
displacement, and LVDT position were simultaneously fed to a computer, with a 
corresponding real-time video record of the fracture process. From these data, the full 
details of the crack extension process were reconstructed after the test. 

Representative micrographs of the fracture process captured from the video 
recording (Fig. 10a) reveal that the carbon-treated (A+C) samples fractured by 
interfacial cleavage at a steady-state fracture energy near 1 J/m2. In contrast, the 
carbon-free (A+O) sample fractured at a significantly larger energy, approaching 250 
J/m2 at steady state. Although fracture still proceeded by interfacial separation (as 
verified by studying post mortem fracture surfaces), substantial plastic deformation 
occurred in the gold, as evidenced by the large fracture energy and microscopic 
blunting behind the crack tip (Fig. 10b). 

The two-order-of-magnitude difference in steady-state fracture energy between 
samples that have and have not undergone a carbon heat treatment is evident in the 
resistance curves obtained from the DCDC fracture tests (Fig. 11). Further, while the 
fracture energy of the carbon-treated (A+C) samples is just a few times in excess of the 
corresponding work of adhesion, that of the as-bonded (A) and post-oxidized (A+O) 
samples exceeds the work of adhesion by more than two orders of magnitude. 

Table HI summarizes the salient features of the DCDC test results. The fracture 
resistance of the gold-sapphire interfaces is seen to fall into one of two broad categories. 
One applies to samples heat treated in an oxidizing environment (A, A+O), including 
those that were heat treated in carbon and subsequently re-oxidized (A+C+O). These 
samples have steady-state fracture energies approaching 250 J/m2. The second 
category applies to samples whose final heat treatment was in a carbon environment 
(A+C). The steady-state fracture energy of these samples ranges from 1 to 2 J/m2. 

The one notable exception to the above categorization of post-bonding 
treatments is the sample heated in a graphite-laden vacuum furnace after the bonding 
treatment (A+V). Contrary to expectations, this sample exhibited a fracture energy only 
slightly below that of the oxidized samples, although the heat treating atmosphere was 
reducing and presented a substantial source of carbon.9 As suggested by post-mortem 
examination of the fracture surfaces, this behavior relates to the limited kinetics of 

8 Questar QM100, Questar Dakin Barlow, USA. 
9 The specimen was packed in graphite foil during heat treatment; the furnace furniture was also 
graphite. 
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carbon transport to (and perhaps along) the interface in the absence of oxygen. 
Coincidentally, the fracture surface was marked by patchy regions of ductile void 
growth interspersed with regions of interfacial cleavage fracture (Fig. 12). 

VI.   Discussion 

a) Carbon Diffusion 
In samples heat treated in carbon-laden ampoules, the spatial uniformity of the 

pore-shape change (Section IV) was used as prima facie evidence that the carbon had 
sufficient time to diffuse across the entire interface. There are no kinetic data for carbon 
diffusion in bulk gold and sapphire, let alone along gold-sapphire interfaces. However, 
indirect experimental evidence suggests that, at the heat treating temperatures used, 
carbon diffusion is negligibly slow through bulk sapphire [27] and gold [35], and is 
therefore likely to be governed by the rate of transport along the gold-sapphire 
interface. In the presence of oxygen, carbon transport to the interface is unlikely to be 
the rate-limiting step due to the high mobilities of CO in the gaseous phase, while 
carbon diffusion along the interface is severely hindered in the absence of oxygen. In a 
reducing, high-vacuum atmosphere, atomic surface diffusion is the only viable 
mechanism for carbon transport; with this as the rate-limiting step in the carbon heat 
treating process, it is reasonable to expect the vacuum-treated sample (A+V) to suffer 
little carbon embrittlement compared with the carbon-treated samples (A+C). 

In addition to carbon mobility, there is evidence that gold mobility itself is 
affected by the heat treatments. As confirmed by the contact angle measurements, gold 
wets sapphire very poorly, both before and after heat treating in carbon. It is therefore 
not surprising that there is a tendency toward de-wetting of the gold foil from the 
sapphire. However, this instability occurs after relatively short times (and well below 
the melting temperature of gold) in the carbon-treated samples (Fig. 5), whereas no 
such instability is observed at the same temperature even after 100 hours in air. These 
observations suggest that carbon may be a self-diffusion enhancer for gold, a 
phenomenon documented in a number of systems in the microelectronics industry, 
including gold in silicon [36,37] and beryllium in GaAs [38]. 

b) Effect of Adhesion on Fracture Energy 
To clarify the relationship between plastic dissipation and adhesion, the 

measured fracture energy is plotted against the measured work of adhesion in Figure 
13. The datum at the origin of the plot corresponds to the degenerate case of an 
unbonded interface. Furthermore, the experimental results of Reimanis et dl. [22,23] on 
gold foils sandwiched between sapphire substrates (see Appendix) have been 
superimposed. The differences in fracture energy and adhesion measured by Reimanis 
relative to the present results are attributed to interface contamination in the former. 
Contamination is likely to have originated from the relatively low-grade foil and non- 
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cleanroom processing conditions in the Reimanis experiments. Although carbon was 
not intentionally introduced to the interface, contaminants residing at the free surfaces 
prior to bonding were likely to have remained in the reducing atmosphere of the 
graphite-laden diffusion-bonding vacuum furnace. In fact, the fracture energy reported 
by Reimanis is only slightly below that of the present A+V sample, which is believed to 
be somewhat cleaner due to higher-purity starting materials and the use of an oxidizing 
environment in the primary bonding heat treatment. 

There is an indisputable correlation between interfacial adhesion and plastic 
dissipation within the metal (Fig. 13). The correlation is highly non-linear, suggesting 
that the coupling between the dissipative terms of Eqn. 1 is strongly synergistic. When 
Wad is sufficiently low, crack-tip bond rupture occurs across the interface with no 
plastic dissipation (i.e., background dislocation motion is not activated). This is the 
regime of ideal, or Griffith, cleavage fracture. As adhesion increases, dislocation 
plasticity initiates under the influence of the crack-tip field, such that interfacial 
decohesion is accompanied by plastic deformation of the metal. Essentially, Wad 

functions as a non-linear valve, regulating the irreversible energy dissipated prior to 
crack-rip bond rupture [20]. When Wad becomes sufficiently large, a transition from 
interfacial debonding to bulk-dominated fracture of the metal or ceramic is anticipated 
[16]. If the ceramic does not fail first, this transition would manifest itself in persistent 
crack-tip blunting via dislocation emission [39] and ductile void growth at the metal- 
ceramic interface [16]. Upon transition from interfacial debonding to bulk-dominated 
fracture, the macroscopic fracture energy may become altogether independent of the 
interfacial strength, governed solely by the constitutive properties of the bulk phases. 
In fact, evidence of an incipient transition in fracture mechanism was observed in 
sample A+V, where regions of both brittle debonding and ductile void growth were 
evident (Fig. 12). In this particular instance, the occurrence of ductile void growth is 
believed to have been promoted by regions of higher-than-typical interfacial pore 
density rather than higher interfacial adhesion. 

c) Effect of Carbon on Gold-Sapphire Adhesion 
An unmistakable correlation between the post-bonding heat treatment, the work 

of adhesion, and the interfacial fracture energy has been' demonstrated. After a short 
carbon heat treatment, the work of adhesion decreases from approximately 0.6 to 0.3 
J/m2 with a corresponding — and precipitous — drop in the interfacial fracture 
resistance, from ~250 to ~1 J/m2. The nominal, or air-bonded value of Wad is fully 
consistent with recent calculations of the gold-sapphire van der Waals adhesion energy, 
estimated between 0.6 and 0.9 J/m2 [40]. Although a quantitative measure for the 
amount of carbon in the respective samples would have been preferred, attempts to 
quantify the interfacial carbon by secondary ion mass spectrometry (SIMS) were 
unsuccessful due to interference from carbon impurities in the bulk sapphire.    A 
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subsequent attempt to use an isotopic carbon tracer (13C) also failed, this time due to 
interference from H12C. However, SIMS did reveal that the concentration of carbon in 
bulk gold was negligible in both as-bonded and carbon-treated samples, consistent with 
the assumptions made in Section n. 

While the effects of carbon heat treatment on the adhesion and fracture resistance 
of the gold-sapphire interface have been clearly demonstrated, the physical origin for 
the drop in Wad associated with carbon treating remains unclear. Three possible causes 
attributable to the heat treatment have been considered: carbon precipitation at the 
interface, carbon segregation to the interface, and carbon-induced reduction of the 
oxygen activity at the interface.10 

The solid-solubility line for the gold-carbon system (Fig. 2) indicates that 
dissolved carbon is expected to precipitate at the gold-sapphire interface upon cooling 
from the heat treatment temperature. In fact, examination of fracture surfaces by SEM 
(Fig. 4a) and AES (Fig. 4b) provides ample evidence of carbon precipitation. However, 
as these precipitates occupy only a small area fraction of the interface, they should 
induce only local variations in the interfacial properties. The precipitate can reduce the 
local interfacial work of adhesion to the lesser of the cohesive energy of carbon, carbon- 
gold adhesion, or carbon-sapphire adhesion, as would be evident from the actual 
fracture path. However, away from the precipitate — and therefore over the majority of 
the interfacial area — the work of adhesion remains unaffected. In this sense, the 
precipitate can be thought of as a generalized interfacial pore having a finite value of 
Wad (and conversely, an interfacial pore is just a degenerate precipitate in the limit 
Wad -> 0). Noting the relatively weak dependence of fracture toughness on interfacial 
porosity and on the basis of available cleavage-plasticity coupling models [21], the 
possibility that carbon precipitates are entirely responsible for the observed two-order- 
of-magnitude embrittlement is discounted. Instead, we turn to interfacial segregation 
as a possible explanation. 

There is a general correlation between the segregation enrichment ratio (defined 
as the equilibrium ratio of interfacial to bulk concentration of the segregating species) 
and the solid solubility of the solute. Making an estimate based on the relations 
proposed by Seah and Hondros [41], the enrichment ratio is approximately 104 for the 
gold-carbon system at the heat treatment temperature and 2x105 at 600°C,n 

corresponding to a several-monolayer coverage of carbon at the saturation limit. It is 
widely accepted that interfacial segregation alters the interfacial work of adhesion [42]; 

10 All other effects that may be associated with the carbon heat treatment, such as secondary 
contamination or microstructural changes, are considered to have at most a second-order influence on the 
interfacial properties and have been eliminated from consideration based on chemical analysis and careful 
experimental control. 
11 It is difficult to estimate the enrichment ratio of carbon in sapphire and gold-sapphire couples due to 
the sluggish diffusion kinetics at the temperatures considered. For that very reason, however, it is 
expected that estimates based on carbon-gold alone should suffice for a first-order estimate. 

10 
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however, the adsorption isotherms of carbon on gold (let alone carbon on the gold- 
sapphire interface) are virtually unobtainable quantities, precluding a quantitative 
prediction of adhesion reduction based on thermodynamic relations. Ab initio 
calculations of metal-ceramic interfaces are few in number, and even fewer consider the 
effect of impurity species on adhesion. However, Hong et al. have shown that a single 
carbon monolayer at the Ag-MgO interface reduces the work of adhesion from 0.95 to 
0.67 J/m2 [43] and from 3.50 to 3.16 J/m2 in the Mo-MoSi2 system [44].12 Carbon could 
behave in a similar manner at the gold-sapphire interface. Hong et al. attribute the 
decrease in adhesion to the increase in strain energy accompanying impurity insertion 
at the interface (i.e., the bonds across the interface are stretched in proportion to the 
covalent radius of the impurity and weakened as the crystals on either side of the 
interface are forced apart), mediated somewhat by the chemical interaction. 

Before ascribing the observed adhesion reduction to carbon segregation, a third 
possibility should be considered, namely that carbon reduces the gold-sapphire 
adhesion not by direct segregation but by reducing the interfacial oxygen activity. That 
this should be the case for metals that readily dissolve oxygen (e.g., Ag, Cu) or that 
form reaction oxides (e.g., Fe, Al, Ni, Si) is comprehensible, and numerous studies 
appear to confirm this effect [e.g., 45-55]. However, gold neither forms stable oxides 
nor has any appreciable oxygen solubility [56]. In fact, Chatain and coworkers have 
found no variation in the contact angle of molten gold on sapphire over a 20-order-of- 
magnitude range of oxygen partial pressures (<10"15 to 5xl04 Pa) [57]. Noting that the 
surface tension of neither gold nor sapphire changes with oxygen pressures in the range 
10"9 to 1 Pa [57], we conclude that gold-sapphire adhesion is essentially insensitive to 
oxygen activity. Yet several investigators report enhanced gold-oxide adhesion in the 
presence of oxygen. For instance, Moore and Thornton found that gold pellets melted 
on sapphire and fused silica substrates formed such strong adhesive bonds in an 
oxygen atmosphere that fracture occurred in the substrate when the pellet was pried 
loose in shear, while pellets melted in vacuum were so weak that they spontaneously 
fell off upon cooling [58]. Bailey and Black observed that gold-alumina solid-state 
reaction bonds formed in air and oxygen exhibited -100% higher shear strengths than 
bonds formed in low-oxygen atmospheres (N^ H2, Ar, vacuum) [59]. A similar 
conclusion was reached by Allen and Borbidge for gold-alumina bonds formed in 
oxidizing and reducing (H2) atmospheres [60]. Pask and Fulrath reported a decrease in 
the contact angle of molten sodium disilicate glass on gold, from -65° in vacuum, Ar, 
He, N2, CO, CO2, H2, and H20 atmospheres to 35° in the presence of oxygen; 

12 This trend is not, however, unequivocal: carbon increases Wad in the Al-MgO system from 0.55 to 0.66 
J/m2 [43]. This apparent anomaly is ascribed to the large strain imposed upon the aluminum in the 
calculation in order to force epitaxy with the MgO. The decrease in strain energy needed to interstitially 
accommodate the C atoms, along with the contribution from chemical bonding energy, are believed to 
outweigh the strain energy cost of stretching the lattice in this system. 
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furthermore, the wetting improvement was accompanied by an increased adhesion 
strength [46]. Pedraza and coworkers found that the peel strength of the gold-alumina 
bond could be increased from 0.1 to 50 MPa by laser-irradiating the alumina in an 
oxygen-rich (O2 or air) atmosphere prior to gold deposition [61]. Studying gold films 
deposited on glass and silicon, Martin and coworkers noted a 3-4 order-of-magnitude 
adhesion enhancement (as measured by the scratch test) in oxygen-ion-assisted 
deposition, while argon- and hydrogen-ion-assisted deposition resulted in poor 
adhesion [62]. 

Auger spectroscopy [61] and X-ray photoelectron spectroscopy [62] on oxygen- 
treated gold-sapphire interfaces detect no structural or chemical changes in the bulk 
constituents. However, Auger spectroscopy of the interface [61] and radioactive gold 
tracer experiments [58] suggest that a stable gold oxide may be forming at the interface 
despite the fact that in bulk states, all known oxides of gold are spontaneously reduced 
above 250°C. The broad reproducibility of oxygen-induced adhesion enhancement 
suggests that this phenomenon is more than a spurious side-effect. Nevertheless, most 
of the above observations can be ascribed to the interaction of oxygen with inadvertent 
carbon contamination. In fact, poor surface preparation prior to bonding has been 
shown to result in carbon contamination on sapphire [49] and metal [63,64] surfaces. 
Upon bonding, these adsorbed contaminants are likely to be trapped at the interface, 
lowering the interfacial energy. In addition to pre-existing surface impurities, one can 
also imagine impurity adsorption during deposition or wetting experiments, caused by 
dirty atmospheric chambers, especially when low-purity gases or dirty mechanical 
pumps are used. Indeed, such contamination effects are consistent with Holmquist and 
Pask's observations of a reversible wetting-dewetting transition of glass on platinum as 
they alternately increased and decreased the ambient air pressure in their sessile drop 
vacuum chamber [65]. This behavior was only observed when the vacuum cold trap 
was bypassed, and the transition was attributed to carbon adsorption onto the platinum 
surface. They estimated that the observed increase in wetting angle could be explained 
if the carbon depressed the surface energy of platinum by a mere 0.05 J/m2. If surface 
contamination were the source of the adhesion modification in the above studies, it 
would not be surprising that exposure to an oxygen-rich atmosphere either 
immediately prior to or during the bond formation would enhance the resulting 
adhesion by gettering strongly reducing contaminants. Such a hypothesis is consistent 
with Chatain's sessile drop experiments, where the substrate was meticulously cleaned 
and high-purity (99.9999%) gold was used, and an oxygen-independent contact angle 
was reported [57]. It is also consistent with our observation that carbon-embrittled 
interfaces recover the majority of their nominal fracture resistance and adhesion 
subsequent to re-oxidation. 

VII.   Summary 
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Using gold-sapphire as a model metal-ceramic system, we found that adhesion 
can be increased by heat treatment in an oxygen-rich atmosphere and reduced by heat 
treatment in a carbon-rich environment. Fracture-mechanical tests revealed that the 
interfacial fracture energy is strongly coupled to these adhesion modifications: a two- 
order-of-magnitude reduction in fracture energy was measured for samples in which 
the adhesion itself was reduced only two-fold. The suggested mechanism responsible 
for this dramatic embrittlement is carbon segregation to the interface, wherein the 
carbon diffuses along the interface (maintaining local equilibrium with the bulk gold) 
and subsequently forms a monolayer-thick interfacial segregant layer. The reversibility 
of the detrimental effects of carbon heat treatment upon re-oxidation suggest that the 
interfacial carbon can be gettered by oxygen. 

Although the precise mechanism of carbon-induced adhesion reduction in the 
gold-sapphire system remains equivocal, we can generalize that the thermochemical 
history of components containing load-bearing metal-ceramic bonds must be carefully 
controlled if superior mechanical properties are to be achieved. Contamination 
introduced during bonding can lead to catastrophic weakening of the bonds. On the 
other hand, there is evidence that adhesion reduction can in some instances be reversed 
by post-fabrication treatment in a suitable environment.   - 
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■0.18 1064 17,66,67 

•0.12 2054 68-70 

-3550c 69 

Table I Surface Energies of Gold, Sapphire, and Carbon 

Ysv.     dysv/dT      Ylv>       dYlv/dT        Tm 

Material    [J/m2]   [J /m2oC]   [J/m2]  [mj/m2oC]     [°C]      Refs. 

Gold 1.40 -0.43          1.14 

c-Sapphire 0.77 -0.12         0.57 

Graphite 
a-plane 1.13 -0.17 
c-plane 1.01 -0.13 

a at 1000 C 
batT=Tm 
c sublimes at -3370 C 

Table II Selected Physical Properties of Gold and Sapphire 

Ea      va     G0     n      aa'b 

Material   [GPa] [MPa]        [106 »O1]   Refs. 

Gold 78±2   0.42   <10   0.5      16.9 71 

Sapphire 380±20 0.26     -      --        8.5        72-73 

a polycrystalline values; 
b averaged over 20-1020°C 

Table III Steady-State Fracture Energies for Gold-Sapphire DCDC Specimens 

heat treatment3 A+C A+O A A+C+O A+V 

rM UM2] 1-2 250 250 230+ 150 

a A = as-bonded (in air), 48 hr. @1040°C 
C = carbon-treated, 8 hr. @1000°C 
O = oxygen-treateded, 48 (A+O) or 100 (A+C+O) hr. @1025°C 
V = vacuum-treated, 48 hr. @1020°C 
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IX.  Appendix 
From Reimanis' [22,23] measurement of pore contact angles (and using the gold 

surface energy from Table I), we calculate the work of adhesion to be Wad * 0.41 J/m2. 
The corresponding interfacial toughness values cannot be compared directly to the ones 
presently measured due to differences in specimen and loading geometries. However, 
Reimanis did not observe a noticeable effect of foil thickness on the steady-state fracture 
energies [23], which approached approximately 150 J/m2 in foils ranging in thickness 
from 10 to 100 urn. There is, however, a substantial correction that needs to be made to 
account for the difference in mode mixity between the four-point flexure geometry used 
by Reimanis (vj/ = 45°) and the DCDC geometry used in the present study (\|/ = 0°). An 
empirical correction has been proposed by Jensen et al. [74]: 

rv=o = r(VF) [!_(!_ X) sin2 (¥)], (Al) 

where A. is a parameter that ranges from 0 to 1 and indicates the sensitivity of the 
fracture energy to mixity angle. Using data for gold-sapphire, Reimanis found A, ~ 0.2 
to give a best fit, from which we calculate the correction factor between the four-point 
flexure and DCDC geometries to be approximately 0.6. Therefore, the mode-I 
equivalent steady-state fracture energy from the work of Reimanis is 90 J/m2, as 
indicated in Fig. 13. 
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X.   Figure Captions 

Fig. 1 Classification of the observed modes of interfacial fracture in metal-ceramic 
systems, in the absence of an interfacial reaction product. Strong interfaces fracture by 
one of two mechanisms dominated by the bulk components: (a) ductile fracture in the 
metal or (b) cleavage fracture in the ceramic, (c) Weaker interfaces have been found to 
exhibit brittle debonding, accompanied by plasticity in the metal layer. In this 
mechanism, the amount of plastic dissipation in the metal is strongly dependent on the 
work of adhesion. 

Fig. 2 Gold-carbon phase diagram [24]. Shaded box indicates temperature range used 
for bonding and heat treating. Note the rapid drop in solid-solubility of carbon with 
decreasing temperature. 

Fig. 3 Illustration of procedure used to prepare gold-sapphire-gold composite 
sandwiches: (a) electron-beam deposition of gold on sapphire substrates, (b) 
consolidation and diffusion bonding (gold foil insert optional), and (c) introduction of 
interfacial carbon via an encapsulated post-bonding heat treatment. 

Fig. 4 (a) Secondary electron image of a gold fracture surface created after 
mechanically testing a sapphire-gold-sapphire sandwich that was carbon heat treated 
(A+C), indicating location of interfacial pores, (b) Carbon-Auger electron (272 eV) 
image of region shown in (a), indicating the non-uniformity of the interfacial carbon 
distribution (inset: Auger electron spectrum). As expected (e.g., [7]), carbon adsorption 
to the pore surfaces is minimal. 

Fig. 5 Evolution of morphological instability with increasing duration (and 
temperature) of carbon heat treatment for (a) 8 hr. at 1020°C, (b) 16 hr. at 1020°C, (c) 144 
hr. at 1030°C, and (d) 16 hr. at 1030°C. All foils were 25 \im thick except (c), which was 
100 urn thick. 

Fig. 6 Optical (top) and scanning electron (bottom) micrographs showing 
characteristic change in interfacial pore morphology as carbon is introduced into 
nominally pure systems, (a) As-bonded and (b) heat treated in carbon for 4 hours at 
1020°C. 

Fig. 7 SEM micrographs of as-bonded (left) and carbon-treated (right) interfaces, (b) 
Corresponding AFM traces across representative interfacial pores. Arrows indicate 
region from which contact angles are measured. 

Fig. 8 Histograms representing the distribution of interfacial contact angles of gold on 
sapphire (a) in the air-bonded samples and (b) after carbon heat treatment. Note the 20° 
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increase in contact angle associated with the carbon heat treatment. 

Fig. 9 Schematic of the double-cleavage drilled compression (DCDC) fracture 
geometry used in the present study. 

Fig. 10 Images of interfacial fracture taken in situ during DCDC fracture experiments, 
(a) Crack-tip cleavage of carbon-treated sample (A+C) at -a steady-state fracture energy 
of 1.25 J/m2. Note that the crack tip remains sharp and straight as it progresses from 
top to bottom in the sequence i-iv. Note also the interference fringes in the crack wake, 
indicating the low crack-opening displacement profile, (b) Fracture of an as-bonded 
sample with an oxygen heat treatment (A+O). The sequence i-iv tracks the crack front 
at fracture resistance values of 20, 75, 150, and 245 J/m2 (steady state), respectively. 
Note the progression from crack-tip cleavage to constrained debonding between ii and 
iii. 

Fig. 11 Resistance curves for fracture along the gold-sapphire interface in the DCDC 
configuration: (a) as-bonded [A] and oxygen heat treated [A+O] samples and (b) 
carbon heat treated [A+C] samples. The shaded regions along the left axis correspond 
to the measured works of adhesion, while those along the right axis show the range of 
steady-state fracture energies representative of the respective heat treatments. 

Fig. 12 Portion of the fracture surface of sample A+V, showing a transition from 
interfacial debonding to ductile void growth. Intermediate region corresponds to void 
growth that was interrupted by interfacial debonding prior to complete necking of the 
gold. 

Fig. 13 Experimentally derived dependence of gold-sapphire fracture energy on the 
interfacial work of adhesion. Solid circles represent data obtained in the present study, 
while open circle corresponds to the adjusted datum taken from Reimanis et al. [22,23]. 
The difference between work of fracture and work of adhesion is taken to represent the 
work of plastic deformation according to Eqn. 1. 

21 

123 



(a) 

(b) 

(c) 

Fig.l 

22 

124 



1200 

1100 Tm = 1064.4 °C 
L 

(Au) + (C) 

McLellan '69 

0.04 0.06 

At. % Carbon 
0.08 0.1 

Fig. 2 

23 

125 



Au 
4 

I      I     I      I 
sapphire 

e-Au 

sapphire 

1      t     t      t 
(a) (b) 

quartz 

carbon 

(c) 

Fig. 3 

24 

126 



12 

10 

8 

61- 

4 

2 

0 

—i—i 1—i 1—r- i  i  i ill...... 1   ■   1   ■   1 

r Aul j        ^ \j\<\rW 

_ 
Au - 

- 
C - 

|Au 
... '.   i   . i      i      i  ... i 1 1 1 1 1 1 1 1 u   

100 200 300 400 

Electron Kinetic Energy [eV] 

(a) 

500 

(b) (0 

Fig. 4 

25 

127 



(a) (b) 

(c) (d) 

Fig. 5 

26 

128 



~ o 
o a Q 
0  O 

a    =   - 

I""'" 
■=' 0 

•    '   o      0  c 
«•»    .  . s 

= ■>•   o     .     • °   =. ,q o 
n »   O ^.■:.-;.:«.^:.;.°-C4 o■'.■.•..  c 

I ?'Tar* »/" '. „  • ?*.~c°'-'° •.   0-*- 
^ :.;•: -[ W*.• • • ÄfflopD? • 

(a) (b) 

Fig. 6 

27 

129 



(. ^CC,-^    pec         C 

1 

,    (~ 

:L ( 
,c;r' 

(a) 

10      12.5 Urn 

(b) 

Fig. 7 

28 

130 



<x> 

30 

25 

20 

<D 15 
.Q 

§ 10 

0 

Air-bonded 127° 

90 100 110 120 130 140 150 160 170 180 

Contact Angle, 6 
(a) 

<X> 

20 

15 

O 10 

E 
■Z.    5 

C-treated 
■      i i 

145° 

■ ■ 

>  -~i—  i   i  

90 100 110 120 130 140 150 160 170 180 

Contact Angle, 8 
(b) 

Fig. 8 

29 

131 



>d2 
Gold^^ 

2R 

0) 
• 1-1 

c/5 

41 

ö 

-2W- 

^ 

Fig. 9 

30 

132 



(a) 

Fig. 10 

31 

133 



(i) (ü) 

(iii) (iv) 

(b) 

Fig. 10 

32 

134 



4UU 1 i i i i 1 i i i i 1 i i  i  i  I—i   i   i—r~m 

▼ A - 
350 • A + O 

- 300 

_  250 
CM 

;§   200 
u    150 

r i _      PliiSSÜJä 

• 

/   / _ 

100 ▼    / j 

/ 
" 

50 

n rntantrrat 

# 

t             t             ■             1              1              1              I              t 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

a (mm) 

(a) 

4.U 1     1     1     1     1     1 1 T—i i | i i i | i—i-!-: 
C-Annealed i 

3.5 
m I 

3.0 "r 

• 
2.5 r • 

- • •   «. 
2.0 • •           • •             iiliii 

1.5 — •• 
Ipil 
=====i==========ä; 

1.0 
• 

♦♦♦ ♦ ♦ * t         ffllli! 
:    *♦ ♦ 1 

0.5 

00 - , . , i l 

1
1

1
1

1
1

 

( )          2 4 6 8 10        12        1< 

a (mm) 

(b) 

Fig. 11 

33 

135 



Fig. 12 

34 

136 



3UU  1 1 1            1 

250 I1 

—   200 - 

^   150 - 

t—'   100 
CO 

M     50 

1 o 1 

. 

• present study 
o Reimanis, '91 

0« ►               r—• 1 

0 0.2 0.4 0.6 0.8 

Wad[J/m2] 

Fig. 13 

35 

137 



138 



PHILOSOPHICAL MAGAZINE A, 1997, VOL. 76, No. 4, 715-728 
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ABSTRACT 
We invoke the Lifshitz theory of van der Waals forces to derive a simple, 

analytical expression for the adhesion across a planar metal-ceramic interface. 
The van der Waals energy is conveniently expressed as a function of readily 
accessible bulk properties of the respective materials. Application to several 
non-reactive metal-sapphire systems shows the predicted van der Waals energy 
to provide a good lower-bound estimate of the measured adhesion energy. Apart 
from platinum and palladium, where strong metal-aluminium interactions have 
been predicted, adhesion energies in noble-metal systems are well accounted for 
by van der Waals interactions alone. Not surprisingly, adhesion in the more 
chemically active metals exceeds the van der Waals energy. 

§ 1. INTRODUCTION 

Previous investigations have shown that the adhesion between metals and cera- 
mics is sensitive to subtle variations in interfacial chemistry (Hirth and Rice 1980, 
Seah 1980, Anderson, Wang and Rice 1987b, Rice and Wang 1989, Rice, Suo and 
Wang 1990, Hong, Smith and Srolovitz 1993a, b, 1995, Gangopadhyay and 
Wynblatt 1994, 1995, Smith, Hong and Srolovitz 1994, Lipkin 1996, Lipkin, 
Evans and Clarke 1997b). Furthermore, even the slightest variations in adhesion 
are associated with dramatic changes in the microscopic mechanical properties 
(Pepper 1976, Gibbesch and Elssner 1992, Korn, Elssner, Fischmeiter and Rixhle 
1992, Elssner, Korn and Rühle 1994, Koski, Hölsa, Ernoult and Rouzand 1996, 
Lipkin 1996, Lipkin, Beltz and Clarke 1997a, Lipkin, Clarke and Beltz 1996). In 
spite of its critical importance, however, the adhesive bond between metals and 
ceramics has proved difficult to quantify by either simulation or experimental mea- 
surement. 

Modern electron bonding theories of metal-ceramic adhesion provide a far more 
rigorous description of the adhesive bond than was previously available, allowing 
improved estimates of the energetics of interface formation in an ever-growing range 
of systems. Among atomistic simulation methods that have recently been applied to 
metal-ceramic interfaces, a number employ ab initio calculations based on self-con- 
sistent density functional theory (Ohuchi, French and Kasowski 1987, Kasowski, 
Ohuchi and French 1988, Blöchl, Das, Fischmeister and Schönberger 1990, 
Freeman, Li and Fu 1990, Schönberger, Andersen and Methfessel 1992, Li, Wu, 
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Research Circle, Niskayuna, NY 12309, USA. 
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Freeman and Fu 1993, Hong, Smith and Srolovitz 1994, 1995, Rao, Wu and 
Freeman 1995) and Hartree-Fock theory (Heifets, Orlando, Dovesi, Pisani and 
Kotomin 1994). In addition, various semi-empirical methods have been employed, 
including the Harris functional approximation (Smith et al. 1994, Hong et al. 1995), 
the tight-binding method (Yamamoto, Kohyama, Ebata and Kinoshita 1989), mole- 
cular orbital theory (Johnson and Pepper 1982, Anderson et al. 1987a), and models 
incorporating image charge interactions (Duffy, Harding and Stoneham 1992, 
Stoneham and Tasker 1985, 1987a, b, 1988, Finnis, Stoneham and Tasker 1990, 
Finnis 1992). Unfortunately, these recent advances in the modelling of interfacial 
energetics have not resolved all of the issues, and fundamental disagreements over 
the merits and event the credibility of particular modelling approaches persist (see 
Finnis, Needs and Schönberger (1995), for instance). Meanwhile, all-electron calcu- 
lations for complex materials systems, such as gold or platinium bonded to sapphire, 
remain prohibitively difficult. 

The need to quantify interfacial adhesion, combined with the complexity of 
atomistic calculations, has led to some reliance in the materials community on simple 
analytical adhesion models. These have shown qualitative agreement with a number 
of observed trends, but claims of quantitative reliability have generally met with 
severe criticism. In the following sections, we review these models and offer an 
improved methodology for calculating the van der Waals contribution to metal- 
ceramic adhesion. 

§ 2. REVIEW OF ANALYTICAL ADHESION MODELS 

A single material parameter—the work of adhesion,  Wad—characterizes the 
degree to which a given metal-ceramic system bonds. The equilibrium work of 
adhesion of a metal-ceramic bond is formally defined as the reversible work asso- 
ciated with creating the respective free surfaces from a bonded interface: 

"ad = Tmv   i  Tcv — Tmci \ v 

where 7mv and 7CV are the surface energies of the metal and ceramic, respectively, and 
7mc is the energy of the bimaterial interface. This definition reveals that maximum 
adhesion obtains for systems where interfacial energy is minimized while the respec- 
tive surface energies are maximized. 

Semi-empirical descriptions of metal-ceramic bonding date back to the seminal 
work of Pask and Fulrath (1962) on glass-metal bonding. Based on sessile drop 
experiments with molten metals, they interpreted good wetting as an indication of 
strong chemical bonding. This dependence was justified on the basis of the Young- 
Dupre equation (which can be derived from simple virtual work arguments): 

Wad = 7mvO+COS0), (2) 

where 6 is the equilibrium contact angle between the sessile drop and the ceramic 
substrate (fig. 1). From eqn. (2), we see that small contact angles (i.e., good wetting) 
correspond to high values of Wad (i.e., good adhesion). Mechanistically, Pask 
argued, good adhesion must be an indication of the lowering of the interfacial energy 
between the glass and metal, such as occurs when an ionic or covalent chemical bond 
is formed across the interface by interchange or sharing of electrons, respectively. 
But what determines how strongly a given system will bond? 
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Fig. 1 

717 

(a) 

(b) 

Liquid-metal sessile drop on a rigid ceramic substrate, showing (a) wetting and (b) non- 
wetting configurations. 

There have been several attempts to develop a predictive model for the interfacial 
adhesion of metal-oxide systems. Humenik and Kingery (1954) noted the positive 
correlation between the observed wetting of oxides by molten metals (characterized 
by Wad) and the corresponding oxygen affinity of the metals (characterized by the 
free energy of formation of the oxide of the liquid metal, AGm0)- To justify this 
observation, McDonald and Eberhart (1965) proposed a semi-empirical bonding 
model for the adhesion of metals to aluminium oxide. The model assumes that the 
metal atoms directly adjacent to the interface adsorb onto the terminating oxygen- 
ion plane of the alumina substrate. Identifying two unique adsorption sites for the 
metal atom on the oxygen-terminated basal plane of sapphire, they assumed that the 
adhesion energy can be fully partitioned. Thus, on one type of site, the metal atoms 
are bound entirely by van der Waals forces and on the other, the atoms are chemi- 
cally bonded to the oxygen ions. The work of adhesion is then calculated by pairwise 
summation of the respective bond energies across the interface: 

W, ad -(«chemAGchem + "vdw/AGvdw) (3) 

where n(- is the number of z'th bond sites and AG, the free energy of adsoprtion of the 
metal atom on the rth site (/={chem, vdW}). McDonald and Eberhart proposed 
that, to a good approximation, AGchem = \ AGm0- Equation (3) therefore predicts a 
linear correlation between the work of adhesion and the free energy of oxide forma- 
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tion of the metal. For a small number of liquid metals on polycrystalline alumina, 
the dependence of Wad on AGmo was shown to qualitatively aaree with the model 
(fig. 2 (a)). 

In the ensuing years, refinements to the McDonald-Eberhart model have been 
suggested. To account for differences in adhesion between a given metal and different 
oxide substrates, Naidich (1981) suggested that the free energy of bulk metal oxide 
formation, AGm0, should be weighted relative to the free energy of formation of the 
substrate oxide. AGM0- Thus, the strongest adhesion obtains in systems with a high 
free energy of formation for the metal oxide and a low free energy of formation for 
the substrate oxide. Conversely, systems with very stable oxides are poorly wetted by 
metals with a low affinity for oxygen. In a compilation of contact angles of over 50 
liquid metal-oxide systems, Naidich demonstrates an undeniable tendency for 
strongly oxidizing metals to wet the respective oxide substrates (fig. 2 (b)). 

Chatain, Rivollet and Eustathopoulos (1986, 1987), Chatain. Coudurier and 
Eustathopolos (1988) and Eustathopoulos, Chatain and Coudurier (1991) noted 
the gross lack of correlation between the work of adhesion and free energy of 
oxide formation for a somewhat broader range of metals on alumina than that 
considered by McDonald and Eberhart (fig. 2 (c)). Believing the use of bulk energies 
of formation to be inadequate, Chatain proposed describing chemical interactions 
across the interface between both metal and oxygen (m-O) and metal and substrate- 
metal (m-M) using the enthalpies of mixing of the respective oxide elements in the 
metal. Neglecting van der Waals energies entirely, the work of adhesion was 
expressed as: 

^ad - -ciAfvlr^iAH^-^AH^), (4) 

where c is a dimensionless fitting parameter (constant for a given oxide substrate), M 
is Avogadro's number, Vm is the molar volume of the metal, n is the stoichiometric 
ratio of oxygen to oxide metal (M + f02 —* MO„), and AH^m] is the enthalpy of 
mixing at infinite dilution of atom i in the metal, where i = {O, M}. The high correla- 
tion between eqn. (4) and experimentally determined adhesion data for a number of 
metals on alumina (using c = 0-22) is shown in fig. 2 (d). 

One shortcoming of the above approaches to estimating adhesion is the failure to 
explain why the adhesion observed in some oxide-noble metal systems, notably 
Al203-Pt, is far in excess of the estimated van der Waals bond energy. In two distinct 
studies, both Klomp (1985, 1987) and Anderson et al. (1987a) have suggested that 
this discrepancy may be due to the neglect of metal-metal, or m-M, interactions. (It 
would be interesting to see Chatain's predictions for platinum-alumina adhesion, 
since some accounting for metal-metal interaction is inherent to the model. 
However, the calculation for platinum-sapphire is not performed in the cited 
papers.) 

In fact, it is unlikely that Wad is amenable to simple partitioning into the van der 
Waals and chemical contributions. Just as a given bond may at once have ionic and 
covalent character, it is erroneous to pre-assign exclusively chemical or van der 
Waals character to individual bonding sites. As a simple illustration, consider the 
prediction of the McDonald-Eberhart model in the limit of a non-oxidizing metal 
(for example, Pt, Au, Ag). Although the metal atom has little capacity to form 
chemical bonds with the oxyen, van der Waals forces should make a decisive con- 
tribution to the bonding energy. By assigning only two thirds of the sites to van der 

142 



Metal-ceramic van der Waals adhesion energy 719 

__T 1    1 i— rT- T-r 

_ 
• < 

_ 

- 1 
• 

• 

•1 u •     '. • 
— _ 

- 

0) 
p-, • 
• 

• 
2 

0 u 
Ü3 
• 

- 
EL. 

u • to < - • ••=  - - <    ■ 

- • 
1 i   ■ J  1   i '     i i I J 1 1 1- 

c 
ID 
bo 
X 
o 

bC 

u 
< 

tin/1] PPM 

bb 

_OJ '■''■'*' 

c 
tu 
bO 

x 
o 

3 

r—I -r —|—i—i—i—r— 

■ c 
S 
• 

\2 

1 
• 

■ 

- 
o* 
U 
• < ■a 

• 
■ 

. 
3    re u o 

\*    * - \ 

■ 

■ _1 L i J L 
o1- 
d 

fcW/f I//M 

i fi T | rrrr| i i i i | i i i i [ i i i-r 

I ■ ■ ■ ■ I ■ » ■ ■ I i ■ i ■ I i i i 

[jam PC
M 

3 

a c« S « 
U   C   CS    ., t,-, 
..Si« g>c 
U     [fl    05   V    c   ^ 
£    O X>    2  '33  -^ 
*~ X!   3   O   -i   p- 

re oo 
.ON 

XI   e6 (D X> T3 tU 
■"  U.   -O    «    S     r- 
-   O -3   «   IS .5 S   ° 

^   o  "S 
MS 3 p cs* 

03  tu  j- 
03     tU 

«Ofi 
•_ x: « 

<—   O ^3 

0) 

£    _o « 
a .N 

o 7B 
a S 

t)    CC 

w     «— 

J3 -5 
P s 

.o -o 
c 

s   " 
43 — 
y o o t- 
? p -a o 

— U _     X     03   . 
5 X) <=  o .*: 
u c _       '~ 
P 5 5, 
_ '■£ X 

3 3 £ 

s o ° & >>  
!-    O 
(D e 

u   S  <u  P  re 
03 /TTS *-■ r" 

S3 "1 

whs 
s-    <U   £    O 

■- Os    OXJ J^-g 

"§SS<"E 
u-x:   I   s 
° «   o.2 

i  X       != 03 

re 

-o a 03 _, 
« g 

_ o 
p — 
""   tu 

X s 
tu re 

O D 

o u, 
03 O 

a; 
p - o 

~ ^ "O Sn E. c ^ u ?u o1 

u  u  S *- ^_ tu 
PCC^^^ 

h     ,T3   >. _: -S 
S   03     -  o 
&.S2 s s 

x -s o..= w 
o o re £ 
03 75 £ 22 Ü 
S « «2 ^ fi 
o-oeS 
c > x is a 

<u <—<   D. re 

« ■».^ *- S **~l    ^^ 03 
bOT^ re re 
toe i u      .a 
u-   3-D u S -a o Ü    C?l      CS      ,H 

re s; ti; C c  ~ 
> o u _ o s 

re CT 

Os 

*03 
03 x a 

-a <~ 
re D 

03  'S 

I'S 

60. 

X   _ 

S3 _0 

3 
O 
a 
o 

X! 

p  a "O re i) 
s rz /u "j5 ■g xs 
2 o «s "7 p 72 
w «*-  a> I^-H P re 

W 
■o 
s 
re 

O 
U 

143 



720 D. M. Lipkin et al. 

Waals bonding and allowing one third of the bonds to contribute nothing to adhe- 
sion, the McDonald-Eberhart model leads to an a priori underestimate of the net 
adhesion energy in excess of 30%! 

The above discussion makes no claim of resolving the complex issues raised but 
is meant to emphasize the scope of uncertainty associated with estimating adhesion, 
especially the van der Waals contribution to this quantity. Of the two models 
described above, one neglcts the van der Waals contribution altogether while the 
other grossly underestimates the van der Waals contribution to adhesion. Our 
present aim is to propose an improved methodology for estimating the van der 
Waals energy and subsequently employ the model to assess the relative contribution 
of the van der Waals energy to the total work of adhesion for a number of metal- 
ceramic systems. 

§ 3. CALCULATING METAL-CERAMIC Wvdw 

Both the McDonald-Eberhart and Naidich adhesion models attempt to calcualte 
the contribution of van der Waals energy to the work of adhesion. However, these 
estimates are based on the pair potential (fig. 3 (a)) having the form: 

W(r) = -C/r\ (5) 

where C = \axa2I\l2/{I\ + h) f°r London dispersion interactions (a, and /, are the 
electronic polarizability and ionization potential of the zth species, respectively). 
Although more accurate accounting methods have been proposed (for example, by 
Benjamin and Weaver (1959)), the total adhesive energy is most typically calcualted 
by summing the pairwise interactions across the metal-ceramic interace, assuming 
that the ceramic surface can be adequately represented as a terminating plane of 
oxide atoms. This approach entirely neglects all second- and higher-nearest-neigh- 
bour interactions, including those between the metal and oxide cations (m-M inter- 
actions). Compounding this error is the use of free-particle polarizability and 
ionization potentials (ionic for oxygen and atomic for metal) instead of values 
appropriate for the respective bulk phases. This simplification neglects such bulk 
phenomena as electron-hole excitations in the metal and charge transfer excitations 
in the oxide, to name a few. Yet another error arises from the estimates of the 
equilibrium interparticle separation r. As the radius is raised to the sixth power in 
the energy calculation, small errors in this quantity lead to gross errors in the 
estimated adhesion. 

Barrera and Duke (1976) have formulated a more rigorous adhesion model based 
on continuum electrostatic theory, in which many of the above mentioned discre- 
pancies are avoided. However, by virtue of its complexity, their model has proven 
difficult to implement (see, for example, Stoneham (1982-1983)). To provide a rea- 
sonable estimate of the van der Waals adhesion while maintaining some degree of 
simplicity, we turn to an alternate method for calculating the van der Waals energy. 
The analysis is based on the Lifshitz (1956) theory of van der Waals forces, employ- 
ing the frequency-dependent dielectric function to calculate the Hamaker constant 
and hence the adhesion energy itself. 

In the Lifshitz continuum approximation, if solids 1 and 2 interact through 
medium 3, then the Hamaker constant A can be expressed as (Israelachvili 1992) 
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Fig. 3 
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n 1          atom 2 
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(a) 

w(r) = -^ 

2rm 

interface 

interface 

(a) Van der Waals pair potential, where r is the interatomic separation and C is related to the 
Hamaker constant through A = n2Cplp2. (b) Schematic of metal-ceramic interplanar 
interaction. The ceramic—in this case A1203—is assumed to terminate in a close- 
packed oxygen plane (the cation lattice is not shown). The close-packed metal plane 
is elastically strained at the interface to epitaxially match the oxygen lattice. The metal 
atoms are located on the oxygen interstitital sites, effectively extending the oxygen site 
lattice. This configuration is expected to give an upper bound to the van der Waals 
energy, W^m. (c) Interplanar interaction where the metal atoms are located directly 
above the oxygen ions. This configuration is expected to give a lower bound to the van 
der Waals energy, H>7aw- 

fex{iv) - £j{iv)\ (eiiiv) - ei(iv)\ di/ 

Kei(w) + e3(iV)/ W'") + £30)y 
(6) 

where vx = InkT/h, while Sj and e;(zV) are the static (v = 0) and frequency-depen- 
dent relative dielectric permittivities, respectively, for medium j. The first term in 
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eqn. (6) gives the zero-frequency contribution to the van der Waals energy and 
consists of both the Debye (dipole-induced dipole) and Keesom (angle-averaged 
dipole-dipole) interactions. The second, frequency-dependent term accounts for 
London (induced dipole-induced dipole) interactions (Pauling 1970, Adamson 
1982). For the case of metal-ceramic adhesion across vacuum (l=m, 2=c, 3=v), 
and noting that ev = ex{w) = 1 and em -

1 oo, eqn. (6) reduces to: 

M^)+i'i ec + 

roc 

K 

fem(w)-\}(ec(iv)-l 

i/Uw + i/ (7) 

For the ceramic, the frequency dependence of the permittivity can be written as 
(Ninham and Parsegian 1970, Hough and White 1980, Israelachvili 1992, 
Bergström, Meurk, Arwin and Rowcliffe 1996): 

£c(^) = l+y- vjvu 
• + ■ 

i 
n~ - 

1 + («V"e.c)" 
(8) 

where i/rotc is the molecular rotational relaxation frequency (infrared), vcc is the 
main electronic absorption frequency (ultraviolet or visible), and nc is the refractive 
index of the medium in the visible range, well above vCQ. Because typically 
^rot.c < v\ < ^e.o we maY neglect the contribution of molecular rotation to the 
dispersion energy, thereby reducing eqn. (8) to a function of only one relaxation 
frequency: 

£C(/V) «  1 + 
1 

i + {y/ve.z)~ 
(9) 

For metals, the static dielectric constant is infinite, and the frequency-dependent 
dielectric permittivity can be derived using the jellium approximation (Egerton 1986, 
Israelachvili 1992): 

£mU^ 1+- v- + V/T 
1 + m (10) 

where vcm is the plasmon frequency of the free-electron gas and r is the relaxation 
time characterizing the lattice damping of the plasma oscillations. To a first-order 
approximation, the lattice damping can be ignored, such that r —> oc. 

Substituting eqns. (9) and (10) into (7) and integrating over the frequency, we 
find that 

-KST 
36 ^^c.m/^e.c 
AKyj2c2{cl- (^e.m/^c.c)2] 

tan' 
V2 v\ 
Ct   ve 

— CTV,. tan" V2 v\ 
(11) 

where, for convenience, we have defined c\ = n^ - \ and c2 = {n'c + 1 l'/2 
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We can simplify eqn. (11) by noting that the entropic zero-frequency term can 
never exceed \kT (for example, ~ 3 x 10~21 J at 300 K). As we shall see shortly, for 
metal-ceramic adhesion, this term is approximately two orders of magnitude smaller 
than the finite-frequency dispersion energy term and can therefore be neglected. 
Furthermore, because vx < i/ex and vx < u^m, the arctangent terms are negligibly 
small compared to n/2. Simplifying and rearranging, we arrive at a simple new 
expression for the Hamaker constant of a metal-ceramic interface: 

A 
3/z q^.m^ex 

8   V/2c2(c2fc'e.c + ^e. 
(12) 

where C] and c2 are functions of the refractive index of the ceramic, as defined above. 
Having derived an expression for the Hamaker constant of a planar metal- 

ceramic bond, we are now in a position to estimate the non-chemical contribution 
to the total work of adhesion. We restrict our analysis to the specific case of a (111) 
fee metal on oxygen-terminated (0001) sapphire. We elastically strain the close- 
packed metal lattice to bring it into site coincidence with the close-packed oxygen 
lattice of basal-plane sapphire. (For the present estimate, we ignore the elastic strain 
energy introduced by this operation.) For the initial calculation, we assume that the 
metal atoms sit in the interstitial sites of the anion lattice (i.e., two cation sites and 
one vacancy site). As illustrated in fig. 3 (b), for each metal atom in contact with the 
ceramic surface, three bonds are created, resulting in a net binding energy of 
3w = 3C/(r0 + rm)6, where r0 and rm are the hard-sphere radii of the oxygen and 
metal in their respective bulk structures. Each surface oxide atom occupies an area 
equal to 2\/3ro. Recalling that, by definition, A = n~Cp0pm, and noting that 
Pi = \/2ßr] is the bulk atomic density of component /, the work of adhesion can 
be estimated as 

W\ vdW 
3C/(r0 + rn 

2v
/3r2

D 

16VX4 
n-17. 

+ ro 

-i -6 

(13) 

Note that for 0-69 < r0/rm < 146, the term within the square brackets in eqn. (13) 
does not deviate from 2-6 by more than 10%. Because lattice mismatch beyond these 
bounds would surely render the epitaxial assumption invalid, we can safely simplify 
eqn. (13) to 

^v+dW 

VIA 
4TTrk 

(14) 

Clearly, eqn. (14) represents an upper bound to WvdW due to our idealization of 
the packing structure at the interface. In fact, lattice mismatch and crystallographic 
misorientation will reduce the coordination of the interface atoms from the max- 
imum value of 12. By assuming the worst-case scenario of atom-on-atom packing 
across the interface (fig. 3 (c)), wherein the nearest-neighbour coordination is 
reduced to 10, we can make a lower-bound estimate of W^dw- 1° this configuration, 
one nearest-neighbour bond and six second-nearest-neighbour bonds are formed. 
(The interaction energy due to third- and higher-nearest-neighbour bonds is negli- 
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gible.) Noting that the second-nearest-neighbour distance is (5/Q + 2r0rm + rm)^2, 
we can write 

Ws vdW 
C/(r0 + O6 + 6C/(5rl + 2r0rm + r\ 2)3 

ml 

16 A 

V3n2r2
0 

2VH 
'r, + 6 '"o + 

'■o 

T-3 

+ 2 

(15) 

As   above,    we    find    that    the    second    term    can    be   approximated    as 
2~6 + 6(8)~3 = 7/256, so that eqn. (15) reduces to 

Wt 
1A 

vdW 
16v/37t2r2)' 

(16) 

Note that the magnitude of the lower bound is nearly half that of the upper-bound 
value, eqn. (14). 

Three features of the metal-ceramic adhesion estimate represented by eqns. (14) 
and (16) should be noted. First, the 1/r6 potential of eqn. (5) has been replaced by a 
weaker, 1/r2 dependence, significantly mediating the error associated with approx- 
imation of interatomic distances. Second, although the metal radius does not expli- 
citly appear in eqns. (14) and (16), the metal-specific contribution to the work of 
adhesion enters implicitly through our calculated Hamaker constant. Finally, the 
present method uses the interplanar spacing across the interface as an a priori input. 
Thus, while van der Waals forces contribute strongly to the adhesion energy, forces 
such as Pauli repulsion define the hard-sphere radii used to calculate the interaction 
energy across the interface. 

Values of the relevant constants for a number of fee metals and sapphire are 
compiled in table 1. For sapphire, nc = 1-77 at a wavelength of 500 nm (Malitson 
1962). The Hamaker constant is calculated using the exact solution, eqn. (11), but 

Table 1.   Parameters for sapphire and several fee metals used for WvdW calculations. 

r(ky i/e(xI0lss_1) b    A(x\0-,g 
J) Wv-dW(Jm-2) Käw(s™~2) 

A1203 1-19 3-2 — -— — 
Ag 1-44 60 2-84 0-57 0-86 
Al 1-43 3-7 2-13 0-43 0-64 
Au 1-44 6-2 2-88 0-58 0-87 
Cu 1-28 4-6 2-44 0-46 0-75 
Ni 1-25 4-7 2-47 0-46 0-76 
Pb 1-75 3-4 200 0-43 0-55 
Pd 1-38 6-2 2-87 0-56 0-87 
Pt 1-39 5-9 2-80 0-55 0-85 

"Hard-sphere radii, calculated directly from room-temperature lattice parameters (Joint 
Committee on Powder Diffraction Spectra 1992): r0 = aAU0J4 and rm = am/2y/2. 

*Taken from Isaacson (1975) and Glicksman (1971) for metals and from Bergström et al. 
(1996), Hough and White (1980) and Gervais (1991) for sapphire. 
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never differs by more than 0-5% from the simplified solution, eqn. (12). In all cases, 
A is within the range 2-3 x 10-19 J. Using the calculated Hamaker constant and the 
tabulated hard-sphere radii, the upper- and lower-bound van der Waals contribu- 
tions to metal-sapphire adhesion are estimated using eqns. (13) and (15), respec- 
tively. Again, we find that the exact solutions are generally within 10% of the 
significantly simpler, metal-radius-independent relations of eqns. (14) and (16). 

§ 4. SUMMARY 

It is interesting to compare the calculated van der Waals energies for a number of 
fee metal-saphire systems to experimentally measured works of adhesion. Because 
the present calculations were made using room-temperature data, while experimental 
adhesion determinations are typically made at elevated temperatures, a temperature 
correction to the respective surface energies was first necessary. The temperature- 
corrected thermodynamic parameters, taken from the available literature, are com- 
piled in table 2. From table 1, the calculated adhesion energies are seen to fall 
entirely between 0-4 and 0-9 J m-2. This is also the range of measured adhesion 
energies for the noble metal-sapphire systems, excepting platinum and palladium. 

In fig. 4, we plot the calculated van der Waals and measured adhesion energies 
against the normalized oxygen reactivity of the respective metals. (This measure is 
chosen for the present comparison in spite of our earlier reticence, primarily because 
of its convenience in ranking the chemical reactivity of a wide range of metals, 
provided the substrate remains the same in all cases.) As expected, the van der 
Waals energy accounts for the majority of the observed adhesion in gold, silver 

Table 2.    Room-temperature (25°C) thermodynamic parameters. 

7sv(Jm 2)° d7sv/dr(mJm"2°C" ')»  7mcPm-2r dlmc/<iT{rcilm'2°C' )"^ad(Jm-2) 

A1,03 0-89 -0-12 —     
Ag 1-60 -0-47 1-75 -0-30 0-74 
Al 1-20 -0-40 (0-89) -0-26 (1-20) 
Au 1-82 -0-43 1-86 -0-28 0-85 
Cu 200 -0-50 2-10 -0-31 0-79 
Ni 2-76 -0-60 2-52 -0-36 1-13 
Pb 0-63 (-0-25) (1-12) -0-18 (0-40) 
Pd (2-69) (-0-60) (2-00) -0-36 (1-58) 
Pt 2-94 -0-60 1-59 -0-36 2-24 

"Value for A1203 taken from Rhee (1972). Values for Ag, Al, Au, Cu, Ni, Pb and Pt taken 
from Kumikov and Khokonov (1983). Value for Pd estimated from Keene (1993), using 
7sv ~ l-27iv 

"Value for A1203 taken from Rhee (1972). Values for Ag, Al, Au, Cu, Ni and Pt taken from 
Murr   (1972,   1975).   Values   for   Pb   and   Pd   estimated   from   Keene   (1993),   using 
d7sv/dr«2(d7lv/dr). 

cValues for Ag, Au, Cu, and Ni calculated from raw data of Pilliar and Nutting (1967). 
Value for Pt taken from McLean and Hondros (1971). Values for Al, Pb and Pd are estimated 
from molten-metal sessile drop values (Chatain et al. 1986). 

^Calculated   using   the   empirical   estimate   suggested   by   Klomp   (1985,    1989): 
d7mc/dr « \ (d7mv/dr + d7cv/dT). 
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Fig. 4 
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Comparison of calculated van der Waals energies and measured works of adhesion for eight 
fee metals bonded to A1203. The upper- and lower-bound estimates of WväW are 
indicated by + and —, respectively, whereas the experimentally measured adhesion 
energies (normalized to their room temperature values) are indicated by solid circles. 
The abscissa, representing a measure of the chemical reactivity of the metal, is the non- 
dimensionalized free energy of oxide formation of the metal (g-atomic basis), taken 
from Kubaschewski. Alcock and Spencer (1993). 

and copper, all of which are expected to exhibit little chemical interaction across the 
interface. Good agreement is also obtained with lead. On the other hand, the van der 
Waals energy underestimates the adhesion in the more reactive metals (the latter 
include those having a substantially negative free energy of oxide formation, such as 
nickel and aluminium, as well as those exhibiting strong metal-aluminium interac- 
tions, such as platinum and palladium). The anomalous behaviour of platinum and 
palladium, as ranked by the free energy of oxide formation, underscores the disad- 
vantage to using the latter as a sole metric of the propensity toward strong chemical 
adhesion. 

To summarize, we have proposed a methodology for estimating the van der 
Waals contribution to adhesion across a metal-ceramic interface. Based on the 
Lifshitz continuum theory of van der Waals forces, the estimate offers an improve- 
ment over the often-criticized technique of pairwise summation of London disper- 
sion forces. These results, although avoiding many of the subtleties inherent to such 
calculations, provide an elegant—and arguably reasonable—analytical estimate of 
an otherwise unwieldly quantity. In an application of the present model to a series of 
metal-sapphire systems, we find that the van der Waals energy provides an accurate 
lower bound to the measured work of adhesion. This lower bound is approached by 
the least reactive metals, whereas the chemical contribution to adhesion plays a 
substantial role in the more reactive metals. 
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and H. N. G. Wadley, Department of Materials Science and Engineering, School 
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INTRODUCTION 

Ceramic matrix composites (CMCs) have attracted great attention because 
of their potential for high temperature structural applications. Among the CMCs, 
calcium aluminosilicate (CAS) glass ceramic composite reinforced by Nicalon™ 
SiC fiber with a carbon-rich interface has been extensively investigated because of 
their "notch-insensitivity": stresses near holes and notches can be redistributed by 
inelastic deformation in the form of multiple matrix cracking [1-3]. Thus, stress 
concentrations can be alleviated near these sites and the risk of catastrophic failure 
is consequently reduced. 

Understanding damage evolution during the deformation of CMCs is very 
important for constitutive model development of as well as materials design. To 
contribute to these goals, techniques for in-situ monitoring of damage initiation 
and accumulation are needed. In previous work, damage was characterized mostly 
by the change of Young's modulus along the loading direction (measured by 
loading/unloading) in conjunction with metallography [1,4,5]. However, this 
approach does not provide detailed insight into the anisotropic nature of damage, 
or about the cumulative effects of fiber-matrix debonding/sliding, radial cracking 
and shear deformation. In this study, we have pursued an in-situ laser-ultrasonic 
technique to nondestructively measure the anisotropic stiffness degradation under 
loading. 

When a laser pulse is directed at a sample surface, high frequency acoustic 
waves can be generated by thermal or ablation mechanisms depending on the 
incident power intensity [6,7]. The resulting propagation of elastic waves through 
an anisotropic media can then be characterized by the well-known Christoffel 
equation [8]: 
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Q(V,n) = det\Cijklnjn!-pV2bik\ = 0, (1) 

where Q« are the second-order elastic stiffness constants of the material, n is a 
unit vector along the bulk wave propagation direction, p is the density of the 
medium, V is the phase velocity and 5,* is the Kroneker delta. Based on a set of 
wave velocities measured along various propagation directions, the elastic 
constants can be deduced by fitting the experimental data to the solutions of the 
Christoffel equation through nonlinear optimization procedures. Unidirectional 
composites can be regarded as transversely isotropic materials. Using abbreviated 
stiffness subscripts, the five independent elastic constants are C//, C33, C72, C13 
and C44, while C22 = Cu, C23 = C13, C55 = C44 and Qö = (C// - C/2)/2. As damage 
accumulates in such composites, the elastic moduli are reduced, resulting in a 
decrease of the wave propagation velocities [9]. 

When damage in the form of cracking occurs, elastic waves are generated, 
i.e., acoustic emission occurs. These dynamic elastic signals propagate through the 
composites and cause surface displacements which can be ultrasonically detected 
by a piezoelectric transducer attached to the sample surface [10,11]. This 
nondestructive technique also provides additional insight into the evolution of 
damage. In the present study, acoustic emission (AE) events were continuously 
recorded during loading/unloading of CAS/SiC composite. This was combined 
with data obtained from laser-ultrasonic and mechanical testing to shed new light 
on the damage evolution process in unidirectional fiber-reinforced ceramic 
composite materials. 

EXPERIMENTAL 

Tensile specimens of dimensions 150 mm x 10 mm x 3 mm with 
continuous fibers parallel to the loading direction (the length direction of the 
specimen) were cut from the unidirectional CAS/SiC composite plate (provided 
by Corning Inc.). The specimen ends were bonded with aluminum tabs using 
modified epoxy (3M Company) to ensure even load transfer. Tensile testing was 
performed on an Instron 4200 machine at room temperature. Axial strain was 
measured by a 2.54 cm gauge length extensometer. 

Laser pulse was generated by a Q-switch 1.064 \im wavelength Nd:YAG 
laser. Pulses with an energy of about 5 mJ were delivered to the loaded sample 
through an optical fiber [12,13]. A laser scan along the two principal directions of 
the sample was controlled by an X-Y-Z positioner. Ultrasonic wave arrivals were 
detected by two broadband piezoelectric transducers in contact with the sample. 
The detected signal was transferred to digital oscilloscopes. The chosen 
coordinates and the experimental setup are shown schematically in Fig. 1. 
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During the experiments, a laser scan was performed at a pre-set stress 
level, and then repeated after unloading to 10 MPa. Before each scan, the laser 
source was re-aligned to keep the laser scan along the same positions. Acoustic 
emission events were recorded continuously by the two sensors during the entire 
tensile test. The root-mean square average of the waveform amplitude was 
calculated automatically each time the waveform was recorded. 

Sample 
under 

loading üj Extensometer 

150mm Hf 

Scan path ■ 

10mm '\L-—) 
3mm 

Fig.l. Experimental setup and scan-path for laser-ultrasonic experiments. 
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RESULTS AND DISCUSSION 

Fig. 2 shows a tensile stress-strain curve for a unidirectional CAS/SiC 
sample during repeated loading/unloading up to 320 MPa. The acoustic emission 
events corresponding to loading the sample to 200 MPa are also shown in Fig. 2. 
Fig. 3 displays the accumulated AE counts during the entire loading/unloading 
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loading/unloading cycles. 
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process. From these figures, it is clear that the a-£ curve starts to deviate from 
linearity over the stress range of 130-150 MPa, which is the accepted matrix 
cracking stress threshold [1]. However, in the linear region, AE events are 
detected, associated with cracks extension from initial flaws formed during 
fabrication. They appear to have little effect on the macroscopic deformation 
behavior and they have only partially spread across the sample. With the 
development of matrix cracking, numerous AE events are detected and an 
appreciable amount of inelastic deformation occurs over the stress range of 130 
MPa to 320 MPa. Fig. 4 (a)~(c) show matrix cracks at different loading stages. 

During unloading from 320 MPa, a number of AE events were observed 
whereas only one or two AE signals were recorded when unloading from 200 
MPa or 270 MPa. AE events during unloading might originate from interface 
sliding [14] and some crack closure effects; these results imply that limited 
damage are occurring on unloading and they are not sufficient to generate AE 
signals at low stress levels, although the hysteresis loops indicate that there was 
energy dissipation during unloading/reloading. The unloading curves from 270 
MPa and 320 MPa (Fig. 2) indicate that the unloading elastic modulus does not 
change much, which implies that the density of matrix cracks seems to saturate 
near the end of the test (320 MPa) as shown in Fig. 4(b) and (c). 

It is noticed that, for most paths of reloading, AE events do not occur 
during reloading until near the previous peak stress level. These observations 
indicate that unloading/reloading does not contribute to significant additional 
damage. Although the hysteresis loops were formed as a results of energy 
dissipation during loading/unloading through frictional sliding at the fiber/matrix 
interface, the results suggest that interface sliding at low damage levels is not 
sufficient to yield detectable AE signals. 

With the development of damage, the elastic stiffnesses are degraded. This 
is manifest by a reduction of the ultrasonic wave velocity as well as a reduced 
unloading modulus on the stress-strain curve. The elastic stiffness constant Cu 
can be found directly from the longitudinal wave velocity at the epicenter 
position. In the transversely isotropic XiXi plane, independent elastic constant 
measurements by the resonant ultrasound spectroscopy technique [15] indicated 
that C44 = Cß6, thus, C44 (or Qö) can determined by averaging the shear velocity at 
different scan positions in the Xfa plane, because the velocity of the pure shear 
wave is given by V = ^Cu I p . 

The other unknown elastic constants C33 and C13 are determined from the 
wave velocity measured within the principal X1X3 plane. Again, the two shear 
modes are not clearly distinguished, thus identifying C33 and C13 are based on the 
longitudinal wave speeds using Eq. (1) through a nonlinear curve fitting 
procedure. 
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Fig. 4. Optical micrographs of replicas show surface matrix cracks at different 
stress levels: (a) 230 MPa; (b) 270 MPa; (c) 330 MPa. 
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The measured wave velocities in the X1X3 plane together with the ones 
determined by curve fitting at four different stress levels (0, 200, 270 and 320 
MPa) are plotted in Fig. 5. Significant delay in the wave arrival time is observed 
when the tensile stress is increased from 200 MPa to 270 MPa, and reflects the 
contribution of damage to the elastic properties. This is consistent with the plateau 
region shown on the c-£ curve. Similar measurements and calculations were 
carried out for another sample at stress levels of 180 and 240 MPa. 

The measurements performed at 10 MPa after unloading from each 
successively higher stress indicate that the wave arrival velocities increase slightly 
after unloading, although not significantly compared with the data before 
unloading. This result implies that there may be some crack closure but the 
damage certainly remained after unloading. 

Elastic constants Cu, C33 and C44 together with the unloading elastic 
moduli E* obtained from the partial unloading test are plotted in Fig. 6 (reloading 
modulus was used at the stress 180 MPa). Cu, C33 and E* show the same 
reduction trend, although the degree of reduction near the end of matrix crack 
saturation for E* seems to be less than that of Cu and C33. 

Laser-ultrasonic measurements showed that there is an overall degradation 
of the elastic stiffness constants. Micrographs of the fracture surface show "crack- 
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Fig. 6. Elastic constants determined by laser-ultrasonic method and unloading 
elastic modulus by tensile test. 
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like" discontinuities in the transverse plane normal to the loading direction [13]. 
The decrease of transverse elastic constants might be due to fiber/matrix interface 
debonding, residual matrix cracking and shear deformation involved in matrix 
crack propagation. This softening effect is still under investigation. 

CONCLUSIONS 

The laser-ultrasonic technique has been successfully applied to study 
damage evolution in a unidirectional fiber-reinforced CAS/SiC ceramic 
composite. Elastic constants were determined based on ultrasound wave velocity 
measurements along various propagation directions. The results show that wave 
propagation is sensitive to damage accumulation in the sample. In conjunction 
with AE recording, the nondestructive laser-ultrasonic method provides valuable 
knowledge of the overall anisotropic damage in fiber-reinforced ceramic 
composites. Damage accumulation under loading is manifest by a reduction of the 
elastic constants, AE signals, and the a-e hysteresis loops. 
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Abstract 

Sapphire fibers containing dilute concentrations of Cr3* ions have been used to determine stress in 

a titanium matrix composite. The Rl and R2 luminescence peaks of the Cr3+ doped sapphire have been 

measured before and after the processing of a Ti-6A1-4V/SIGMA (SiC) fiber reinforced composite. The 

peak shifts have been related to the sapphire fiber's principal stresses using the well established 

piezospectroscopic relationships. A fiber located near the center of the sample had an axial stress value, 

ozz = 876 ± 147 (MPa), while the sum of the inplane stress components, (0^+0-99) = -61 ± 93 (MPa). The 

thermal stresses that developed after processing have been modeled using the Generalized Method of Cells 

and used to develop a relationship between the stress of the sapphire witness fiber and that of the 

surrounding SIGMA fibers and the Ti-6A1-4V matrix. 

1. Introduction 

Silicon carbide fiber reinforced titanium composites have been proposed for use in high tempera- 

ture applications such as gas turbine engines [1,2]. Three processing methods, molten spray deposition 

[3,4], vapor phase deposition [5-7] and powder slurry (tape) casting [8] are being developed for their syn- 

thesis. Each results in monotapes consisting of unidirectional fibers in a more or less uniformly distributed 
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matrix. These monotapes are then consolidated to a near net shape component by a high temperature con- 

solidation process such as hot isostatic pressing. 

High temperature consolidation can activate many processes that contribute to a reduction in 

mechanical properties. Fiber-Matrix interactions at the interface [9-11], fiber microbending and fracture 

[12,13], porosity due to incomplete consolidation [14,15] and large residual stress accumulation during the 

cool down of the MMC from elevated temperatures [16,17] can all occur. The development of a successful 

process methodology requires a full understanding of these processes. Residual stresses are particularly 

important to understand. These originate from the difference between the coefficients of thermal expansion 

(CTE) of the metal-matrix (high CTE) and ceramic fiber (low CTE) and form as the composite cools from 

the elevated temperatures used for consolidation. This results in a compressive axial, radial and hoop 

stresses in the fiber that are balanced by tensile axial and hoop stresses in the matrix. The matrix hoop 

stress, if sufficiently large, can cause radial matrix cracking and a significant loss of strength in the trans- 

verse direction [18,19]. The residual matrix stresses in the axial direction can also effect longitudinal 

stress-strain response due to the premature initiation of plasticity or cracking [16,17]. 

Accurate, reliable non-destructive methods for measuring residual stress are needed to ensure the 

quality of these composites. Current methods of residual stress measurement such as x-ray or neutron dif- 

fraction are either insufficient in their depth of penetration (only -50 micron for conventional x-ray diffrac- 

tion) or are costly and require special synchrotron or neutron facilities. It has been shown that the 

luminescence from embedded sapphire fibers can be used to accurately measure residual stresses [16,20]. 

This idea is explored in the current study which investigates the use of a fiber-optic technique to measure 

the stress in a witness sapphire fiber and develops relationship between stresses in the silicon carbide 

fibers/titanium matrix and that in the embedded sapphire fiber. 

2. Luminescence 

Luminescence originates from the radiative transition of an electron from an excited state to one of 

lower energy. There are two types of luminescence; fluorescence and phosphorescence. Fluorescence 

involves a transition that is not forbidden by spin selection rules. These "spin allowed" transitions occur 

rapidly and quickly depopulate the excited state. Thus they have emission lifetimes of the order of nano- 

seconds. Phosphorescence transitions involve spin flips, and thus are "spin forbidden", and take much 

longer to occur. These forbidden transitions typically have emission lifetimes ranging from microseconds 

to seconds. 
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Most grades of aluminum oxide (including those used to synthesize sapphire fiber) contain trace 

amounts of chromium that exists as a Cr3"1- ion in substitution sites for the aluminum in the corundum lat- 

tice. Blue or green light excites the ions to then excited 2Eg and 4A2g sites. Due to spin-orbit, and the trigo- 

nal crystal field distortion, the 2£g state is split into the ~E and 2A states separated in wavenumber by 

approximately 30 cm"1. The decay to the ground state from either is spin-forbidden, and results in a phos- 

phorescence with a doublet spectrum. The doublet peaks are designated Rl and R2 and appear as two spec- 

tral lines at approximately 693nm and 694 nm [21]. 

R lines frequency shifting with applied stress was first report by Schawlow [22] in 1961. The phe- 

nomenon was further investigated by Foreman, et al. [23] at the National Bureau of Standards who 

explored it's use to calibrate and measure stress inside of diamond anvil cells. They calculated the wave- 

length shift-stress response to 20 GPa and reported it to be linear. Bell et al. [24-26] extended the scale to 

550 GPa and reported that nonlinearites did not show in the line shift until the stress reached -29 GPa. 

Recently, He and Clarke [27] have detected a slight nonlinearity in the a-crystallographic direction above a 

stress of -500MPa. 

Grabner [28] developed a relationship between the tensor components of stress and the line shift 

Av (in cm"1). 

AV    =    ItyjJ (1) 

In eq(l), the Ily are piezospectroscopic constants (in GPa/cm"1) and aCjj are the applied stress components 

defined in the crystal coordinates (in GPa). He and Clarke [27] could detect no contributing shear compo- 

nents to rijj. In terms of the crystallographic coordinates, 

Av = n11ofl + n22oM + n33oc (2) 

where aa, am, and ac denote stress in a, m and c crystallographic directions. Based on the fact that 

piezospectroscopic effect of the R lines is controlled by the point symmetry of Cr3+ ion in an undeformed 

trigonally symmetric crystal, it was assumed until recently that nu = n22- He and Clarke [27] found that 

nu for the a crystallographic direction is different than n22 for the m direction for both the Rl and R2 

lines. Numerical values for the IIjj are summarized in Table 1. 
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Table 1: Piezospectroscopic constants report by He and Clarke [27] 

Line n,,(GPa/cm-1) n22(GPa/cm-') n^GPa/cm"1) 

Rl line 2.56 3.50 1.53 

R21ine 2.65 2.80 2.16 

For c-oriented fibers in metal matrix composites, the inplane residual stress components (ca and 

om) are similar. For stress states where aa = am and ac » am, aa one can approximate n,, = n22 if one 

replaces n,, and n22 by nu = (n,,+ n22)/2 . For this state of stress, both ac and the sum (aa + am) 

can be calculated from measurements of Av for both R lines. Values for IT 11 and n33 deduced from He 

and Clarke's data are in quite close agreement with values measured by other researchers as shown in Table 

2. 

Table 2: Piezospectroscopic constants as reported by various researchers 

Rl line R2 line 

Source nu (cm"1, /GPa) n33(cm-VGPa) ITn i(cm"'/GPa) 

2.725 

n33 ̂ cm-'/GPa) 

He and Clarke [27] 3.03 1.53 2.16 

Schawlow et al. [29] 3.0 1.8 2.8 2.3 

Kaplyanskii et al. [30] 3.2 1.4 2.8 1.9 

FeherandSturge[31] 2.7 1.8 2.4 2.2 

Equation(l) can be rewritten in terms of the principle applied stresses using a standard transforma- 

tion of tensors. 

c 
ij im   mn jn v-v 

In equation (3), aim and ajn are the coordinate transformation matrices and omn is the stress tensor in the 

principle applied stress coordinate system. For a c-axis crystal aligned along the z-axis of stress, the equa- 

tions can be written. 

Av = ni
1I(orr + aee) + n33aJZ (4) 
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3. Experimental 

3.1. Sample preparation 

A cylindrical Ti-6A1-4V/SIGMA 1240 composite sample was constructed from sputter coated Ti- 

6A1-4V on SIGMA 1240 fibers. The SIGMA 1240 fiber is a tungsten cored ~100p.m diameter silicon car- 

bide fiber with a carbon-Til^ duplex coating. The near line of sight sputtering procedure resulted in an 

elliptical matrix coating with a small matrix grain size due to the low deposition temperature(-400C). A 

bundle of approximately 4000 matrix coated fibers, together with a centrally located sapphire fiber, was 

packed into a cylindrical canister. The sapphire fiber was supplied by Saphikon Inc. (New Hampshire) and 

was grown by an edge defined film fed growth (EFG) technique [32]. The canister consisted of a tube and 

two endcaps of commercially pure CP-2 titanium with a total length of 171mm, a diameter of 15.9 mm and 

a wall thickness of 1.6mm. The HIP canister was evacuated to the millitorr range and electron beam 

welded at Kin-Therm Inc. 

The canister with coated fibers was then placed in an Asea Brown Boveri Autoclave Systems Inc. 

Minihipper and subjected to the consolidation cycle in Fig. 1. This cycle resulted in the complete densifica- 

tion of the composite and a SIGMA fiber fraction of 44.5%. The canister ends were subsequently removed 

to reveal the transverse plane of the fibers. The outer layer of can was left attached to the composite speci- 

men (Fig. 2). One of the exposed sample ends was polished for the metallographic characterization and 

spectroscopic measurements. Micrographs of the embedded sapphire fiber and the surrounding SIGMA 

1240 fiber and Ti-6A1-4V matrix material are shown in Figure 3. 
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Figure 1.      Temperature and Pressure cycle for the consolidation of the Ti-6A1-4V/Sigma 1240 Compos- 

ite. 
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Figure 2.      Ti-6A1-4V/Sigma 1240 composite specimen with attached outer can and embedded sapphire 
fiber. 
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Figure 3.      SEM picture of the embedded sapphire fiber showing the local fiber and matrix layout 
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3.2. Spectroscopic measurements 

Experimental data was collected using the fiber optic coupling system in Figure 4. An 

Ominchrome model 532-MAP air-cooled argon laser, set to läse at 514.5nm, was used to excite fluores- 

cence in the chromium doped sapphire fiber. The laser beam was filtered through a Cu(N03)2 filter to 

remove argon laser plasma lines, specifically the one at 696.543nm (14358.94cm"1). The laser beam was 

then focused on to one end of a bifurcated optical fiber with a 5cm focal length convex lens. The common 

end of the bifurcated optical fiber was placed as close as possible to the end of fiber to be interrogated and 

aligned via a x-y-z stage to maximize the luminescence signal to the monochromator. 

The second arm of the bifurcated fiber optic transmitted the luminescence signal to a 0.64m single 

grating monochromator(Instruments SA, model HR-640). Interfacing the fiber optic bundle to the mono- 

chromator slit was achieved using a 20mm and 60mm focal length convex lens. The slit used was 20mm in 

height and llp.m in width. The monochromator was equipped with a 110 x 110 mm flat grating with 

1200groves/mm. The resolution at the R line luminescence wavelengths (~690nm) was approximately 

0.017nm. 

Series 532 - MAP 
Omnichrome Ar+ Laser        Cu(N03>2 

- \ = 514.5 nm filter Bifurcated optical fiber 

Matrix 

Instruments, SA 
0.64 monochromator 

Al203: Cr3"1- fiber 
SIGMA fibers 

CCD detector 

Figure 4.      Schematic of experimental setup for luminescence measurements 

A Spectraview-2D Charged-Coupled Device(CCD) was attached to the monochromator and used 

as a detector. The CCD array was a liquid nitrogen cooled array and has a spectral response from 400 to 

lOOOnm. The signal from the CCD array was stored on a personal computer and the spectrum then fitted to 

a double lorentzian equation of the form 
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/(*) = X, + 
2 f        w,A, W-.A-, 

(5) 
<w,+4(j:-p])      w2 + 4(x-p2) 

where I is the signal intensity, X, is the background intensity level. A| and A2 are the area of the peaks, w, 

and w2 are the width of the peaks while p, and p2 are the positions of the peaks are constants determined 

by the fitting routine. For the present problem a program was written using MATLAB™ that fits the data 

to equation (5) using a nonlinear least square method. The algorithm used the Levenberg-Marquardt 

method to solve for the constants in equation (5). 

3.3. Experiments 

Spectra were obtained for the composite specimen as well as unstressed (unembedded) fibers to 

obtain a reliable unstressed peak position. Temperature was recorded for all samples by use of a Thinfilm 

RTD with an precision of ± 0.1 °C (Omega Technologies Company). Continuous monitoring of the neon 

line at 692.7467nm insured that thermal fluctuations in the environment did not effect the measurements. 

Peak positions were then determined using of the method described and corrected for temperature varia- 

tions using 

vi = v{T0) + ai(T-Tref) (6) 

where V; are the peak positions in cm"1, a; are the linear temperature correction coefficients for the Rl and 

R2 lines and Tref is the reference temperature (23.0°C) to which all data was corrected. For the Rl peak, a] 

= -0.144cm-1/°C, and for the R2 peak, cc2 = -0.134crrf,/°C [27]. The temperature corrected peak positions 

of the stressed fiber were then subtracted from the temperature correct peak positions of the unstressed 

fiber to get a peak shift, Av, due to the imposed stress state. 

4. Results 

A sample spectrum for the unembedded and embedded sapphire fibers is show in Figure 5. It is 

clearly seen that there is a shift to blue wavelengths (lower wavelength) for the embedded (stressed) sam- 

ple which correlates with a large tensional (positive) stress component in the fiber. Temperature corrected 

peak positions for the unstressed and the embedded fibers are shown in Table 3. The errors for the mea- 

surements of peak positions for the individual fibers were calculated by finding the standard error of the 

mean for the fibers. From the data in Table 3, peak shifts due to imposed stresses can be calculated by sub- 

tracting the stressed peak positions from the unstressed peak positions. The peak shifts for the embedded 
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fiber (Table 4) were then be used to calculate the stress components of the imposed stress state (Table 4) by 

inverting equation (4). 

o\_ = 1.275-Av0--1.147-AvD1 

(or+cM) = 0.909 -AV-. -0.644 • Av£ 

(7) 

(8) 

The stresses in Table 4 are positive tension for ozz component and small negative compressional values for 

the (cn + Gee) component for the embedded fiber. The errors in stress were estimated by propagating the 

peak shift error through equations 7 and 8, and then computing the root mean error of the stress. The preci- 

sions is governed by the resolution of the spectrometer (0.017nm) and fluctuations in the temperature 

which creates thermal distortions in the grating and spectrometer. 
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Figure 5.      Luminescence spectra for the embedded fiber and an unembedded (unstressed) fiber showing 

a (blue) shift to shorter wavelength for the embedded fiber. 

Table 3: R lines Peak Positions for an unstressed and an embedded fiber. 

Fiber                                        v^cm"1) v^cm"1) 

Unstressed (unembedded) fiber                  14403.24 ± 0.04 

Embedded fiber                              14404.41 ± 0.07 

14433.08 ± 0.04 

14434.81 ±0.08 
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Table 4: R lines peak shifts and measured stress components for the embedded sapphire fiber in the 
Ti-6A1-4V/SIGMA 1240 composite 

Fiber AvR1(cm-1) AvR2(cm-') <Jzz(MPa)        o^ + OeeCMPa) 

Embedded Fiber 1.16 + 0.08 1.73±0.09 876±147 -61+93 

5. Modeling 

The experimental system can be modeled using the generalized method cells (GMC) [33]. GMC 

accommodates materials that are either isotropic or transversely isotropic with either elastic or elastic-plas- 

tic constitutive behavior. The ability to model a material as transversely isotropic is necessary since the c- 

axis oriented sapphire fibers are not isotropic in nature. A GMC model analysis consists of four basic steps. 

The first is identification of a repeating volume element (RVE) which is the necessary amount composite 

material to be modeled for accurate result to be obtained. For the present problem the assumption that the 

sapphire fiber is effected by the material within three fiber diameters means the even though the RVE 

repeats its self in two dimensions the cell is large enough that adjacent sapphire fibers in repeated cells do 

not influence each other. This repeating volume element is then broken up into ß x y rectangular subcells 

and a material type is assigned to each subcell. 

The macroscopic average stresses and strains in the RVE are then related to the microscopic 

stresses and strain of the individual subcells. Continuity of tractions and displacements in the average 

sense are the imposed on the interfaces between adjacent subcells. The continuity conditions along with 

microequilibrium establish a relation between microscopic total strains and plastic strains and the macro- 

scopic strains by the use of the appropriate concentration tensors. The last step develops the overall macro- 

scopic constitutive equations of the composite. 

The Ti-6A1-4V, matrix metal, was modeled as an isotropic elastic-plastic material with a linear- 

hardening constitutive behavior. The sapphire fiber was modeled as a transversely isotropic elastic material 

while the SIGMA 1240 fibers were modeled as an isotropic elastic material. All of the material properties 

(CTE, Young's moduli, poisson's ratio, shear modulus, yield stress and hardening coefficient) were 

allowed to vary with temperature. The material property values used for the modeling are shown in the 

Appendix. 

Using the micrograph of the embedded sapphire fiber shown if Figure 3, a 19x20 GMC grid was 

created for the region surrounding the embedded fiber. The temperature was decreased from 900°C to 25 
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°C and the stresses in each subcell computed. The average stresses in the sapphire fiber, the SIGMA fibers 

and the metal matrix were computed and are given in Table 5. 

Table 5: Average modeled stresses using GMC in the constitutive material for the region near the 
embedded sapphire fiber. 

Material <7zz(MPa) °rr + aee (MPa) 

Sapphire fiber 729 -1 

Sigma 1240 fibers -595 -76 

T1-6A1-4V matrix 376 58 

19- 

■ ■        ■■ 

20 

Sapphire fiber 

Sigma 1240 fibers 

Ti-6AI-4V matrix 

Figure 6.      GMC grid for the embedded fiber showing the assigned subcells for the sapphire fiber, 

SIGMA 1240 fibers and Ti-6A1-4V matrix. 

6. Discussion 

Comparing the measured result for the embedded sapphire fiber in Table 4 to the GMC modeling 

results in Table 5, it is seen that the modeled results for the czz and an+ oM stresses are within the error of 

the measured values. The positive (tension) values in the sapphire fiber arises because its surroundings 

(composite) effective CTE is lower than that of the sapphire fiber even thought the Ti-6A1-4V matrix has a 
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higher CTE than the sapphire fiber. A simple calculation for the effective CTE of the surrounding material 

can be made using a rule of mixtures. The axial CTE values at 25 °C for the SIGMA fiber. Ti-6A1-4V 

matrix, embedded sapphire fiber and the effective Ti-6A1-4V/SIGMA composite (Vf = 44.5%) are given in 

Table 6. 

Table 6: Axial CTE at 25 °C for the stated materials 

Material Axial CTE 

SIGMA 3.99xlO~6/(°C) 

Ti-6AI-4V 9.55 x 10"6/(°C) 

Sapphire 7.67 x 10~6/(°C) 

Ti-6A1-4V/SIGMA 6.90xlO~6/(°C) 
(Vf=44.5%) 

Since the effective composite material outside of the sapphire fiber has a lower CTE in the axial 

direction than the sapphire fiber, the material as a whole can not shrink as much as the sapphire fiber in the 

axial direction, thus putting the sapphire into a state of tension axially. Thus by generating a modeled stress 

value that is equivalent to the measured stress value of the sapphire fiber, a mapping of the stress values to 

the stress in the SIGMA fibers and Ti-6A1-4V matrix surrounding the embedded sensing fiber can be 

accomplished 

7. Summary 

Luminescence sensing of an embedded sapphire fiber in a Ti-6A1-4V/Sigma 1240 composite has 

been accomplished. The measured result indicated that the sapphire fiber is in tension in the ozz compo- 

nent and a slight compression in the (cn+GQQ) component due to thermal cool down from consolidation 

temperature. The measured results were successfully predicted using the Generalized Method of Cell 

(Table 5). Further work needs to be done on the modeling of the sample to include the effect of tooling, 

pressure applied during cool down from consolidation temperature, creep of the matrix and can material 

and fiber alignment in the composite structure. 
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Appendix 

Table 7: Physical Properties used in modeling for a) sapphire fiber, b) SIGMA 1240 fiber and c) Ti- 
6A1-4V matrix 

a) Sapphire [16] 

Temp ax(10-6/C) EM E33 

(°C) c-axis a-axis (GPa) (GPa) 

24 7.64 6.76 423 460 

100 7.76 6.86 420 457 

300 7.84 7.12 413 451 

500 8.27 7.36 405 445 

700 8.45 7.58 398 439 

900 8.58 7.77 391 433 

Temp (°C) Vl2 v,3 G (GPa) 

25 0.305 0.169 169.8 

100 0.308 0.168 168.6 

300 0.316 0.167 166.15 

500 0.323 0.166 163.4 

700 0.331 0.165 160.9 

900 0.338 0.165 158.4 
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b) SIGMA 1240 
[34,35,36] 

Temp (°C) E (GPa) ax (10"6 /°C) V 

25 360 3.99 .20 

100 358 4.03 .20 

300 354 4.16 .20 

500 350 4.33 .20 

700 346 4.47 .20 

900 342 4.49 .20 

c) Ti-6A1-4V [37] 

Temp (°C) E (GPa) ax (10-6/°C) V ay (MPa) SHP (GPa) 

25 113.7 9.44 0.30 900 4.6 

100 107.5 9.63 0.30 730 4.7 

300 97.9 9.78 0.30 517 5.4 

500 81.3 9.82 0.30 482 4.8 

700 49.6 9.74 0.30 303 1.7 

900 20.7 9.81 0.30 35 1.2 
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I.   Introduction 

Soap bubbles show up in kitchens, science museums, and popular books 
(e.g., Isenberg, 1978). There has long been a tradition of drawing analogies 
between soap films and microscopic surfaces in solids. The analogy, how- 
ever, can be misleading. The air pressure in each bubble is uniform and 
relates to the bubble volume. The shapes of an assemblage of bubbles 
minimize the total film area for the given volume of every bubble. The 
shapes change when air is blown into the bubbles or diffuses across 
the films. 

In solids, there exist phase boundaries, grain boundaries, domain walls, 
and bi-material interfaces. The stress in each solid grain is usually non- 
uniform, and the total surface area need not be minimal for given grain 
volumes. In addition to surface tension, the free energy results from stress, 
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electric field, and composition gradient, etc. Kinetic processes include 
diffusion, creep, and reaction. 

The motion of the microscopic surfaces affects material processing and 
performance. For a bulk material, an overall knowledge of the structure, 
such as the grain size distribution and pore volume fraction, is often 
adequate. For a film or a line, where the grain size is comparable to the 
film thickness and linewidth, an overall knowledge of structure is inade- 
quate; for example, in submicron aluminum interconnects, the electromi- 
gration damage relates to structural details, e.g., crystalline texture, indi- 
vidual grain-boundary orientation (Thompson and Lloyd, 1993). In cases 
like this, the internal surfaces are better viewed as components of one 
single structure. 

We can now analyze deformation in complex structures using general- 
purpose computer codes. It would help many technical innovations if we 
could do the same for the evolving structures in materials. With this in 
mind, this article reviews the recent development of an approach that 
treats surface motion in a way that resembles the finite element analysis of 
deformation. Attention is focused on two mass transport mechanisms: 
migration of, and diffusion on, an interface. Examples are also given for 
other mass transport mechanisms. 

At the heart of the approach is a weak statement that combines the 
kinetic laws and the free energy variation associated with virtual surface 
motion. On one hand, this weak statement reproduces the differential 
equations of Herring (1951) and Mullins (1957). On the other hand, this 
weak statement forms the basis for various Galerkin-type methods. In the 
latter, a surface is described with a finite number of generalized coordi- 
nates, and the Galerkin procedure reduces the weak statement to a set 
of ordinary differential equations that evolve into the generalized 
coordinates. 

Depending on one's purpose, one may describe a surface with either a 
few or many degrees of freedom. To study certain global aspects of the 
surface motion, one may describe the surface with a few degrees of 
freedom. Ideas in low-dimensional nonlinear dynamics apply. Even with a 
linear kinetic law, surface evolution is highly nonlinear because of large 
shape and topology changes. The surface may undergo instabilities and 
bifurcations. 

Rigorously, a surface has infinitely many degrees of freedom. To resolve 
local details, one must describe the surface with many degrees of freedom. 
A systematic approach is to divide the surface into many small, but finite, 
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elements and follow the motion of the nodes of the elements The 
Galerkm procedure gives a viscosity matrix that connects the generalized 
forces and the generalized velocities. The procedure is analogous to the 
finite element analysis of deformation. 

Most sections of this article may be read independently. The main 
exceptions are Sections II and V, which formulate, respectively, interface 
migration and interface diffusion. The subjects of all sections should be 
clear from the Table of Contents. Free energy is used throughout the 
article to study isothermal processes. (An entropy-based formulation is 
necessary if heat transfer plays a part.) The treatment is phenomenological 
with few references to the underlying atomic processes. Such continuum 
models are indispensable because a microstructural feature often contains 
a huge number of atoms. Technical processes are used to motivate the 
discussion, but the emphasis is on basic principles and simple demonstra- 
tions Analytical solutions of several idealized models are included- they 
shed light on more complex phenomena, and may also serve as benchmark 
problems for general-purpose codes in the future. No attempt, however 
has been made to review the literature exhaustively. By focusing on the' 
principles and demonstrations, the reader should grasp what this line of 
thinking has to offer, and integrate it to his or her own way of thinking. 

n.   Interface Migration: Formulation 

This section demonstrates the basic principles by examining a classical 
model with very few ingredients. An interface separates either two materi- 
als, or two phases of the same atomic composition, or two grains of the 
same crystalline structure. The free energy that drives the interface migra- 
tion has contributions from many origins. This section includes only the 
mterface tension, and the free-energy difference between the two phases 
m bulk. r 

Many kinetic processes may determine the velocity of the interface 
motion If a phase transition generates a large amount of heat, such as 
during freezing, heat diffusion often limits the interface velocity If the two 
phases have different compositions, such as in solution precipitation, mass 
diffusion m the phases often limits the interface velocity. In addition to 
diffusing over long range, atoms must leave one phase, cross the interface 
and join the other phase. This last process will be referred to as interface 
migration. This section analyzes the situations in which long-range heat 
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and mass diffusion are absent or rapid, so that the interface process limits 

its velocity. 
This model arises from many phenomena; see Taylor et al. (1992) for a 

literature survey. The presentation here focuses on the free energy varia- 
tion associated with the virtual motion of the interface, leading to a weak 
statement. The weak statement, much like its counterparts in continuum 
mechanics, is the basis for finite element methods. It has been used, for 
example, by Sun et al. (1994) to study void shape change in an elastic 
crystal via surface reaction, and by Cocks and Gill (1995) to study grain 

growth. 

A.    NONEQUILIBRIUM THERMODYNAMIC PROCESS 

To be definite, here we will visualize the model in terms of one of its 
many applications: a solid particle in contact with its vapor. Atoms either 
condense from the vapor, or evaporate from the solid, both causing the 
interface to move. Imagine a situation in which atoms diffuse rapidly in the 
vapor, but react slowly on the interface, so that the vapor maintains a 
uniform composition and pressure. The vapor phase is in one equilibrium 
state, and the solid phase is in another equilibrium state. The two phases, 
however, are not in equilibrium with each other, so that one phase grows 
at the expense of the other. The ingredients of this nonequilibrium 
thermodynamic model follow. 

1.    Free Energy 

Let y be the surface tension (i.e., the free energy per area of the 
interface), which may depend on crystalline orientation. Let g be the 
difference in the free energy density of the two phases (i.e., the free energy 
increase associated with the condensation of unit volume of the solid). The 
introduction of the solid particle into the vapor changes the free energy of 
the entire system by 

G = f ydA + gV. (2.1) 

The integral extends over the interface area A, and V is the volume of the 
solid particle. We will assume that the particle is immersed in a large mass 
of the vapor, so that g is constant as the reaction proceeds. 
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When the surface tension is isotropic (i.e., independent of crystalline 
orientation), G = yA + gV. Thermodynamics requires that the reaction 
proceed to decrease the free energy. The surface tension is positive and 
therefore strives to decrease the surface area. When the solid surface is 
concave, such as a dent on a flat surface, y favors condensation. When the 
solid surface is convex, such as a hillock on the surface, y favors vaporiza- 
tion. The free energy density difference between the two phases, g, can be 
either positive or negative. When g > 0, it favors vaporization and reduces 
the particle volume. When g < 0, it favors condensation and increases the 
particle volume. In general, both y and g affect interface motion. 

2.    Virtual Migration and Driving Pressure 

Free energy by itself is insufficient to determine the particle shape 
change, because countless ways of shape change would reduce the free 
energy. To evolve the particle shape, the model needs more ingredients. 

Figure 1 illustrates the motion of an interface by mass exchange be- 
tween the solid and the vapor. A virtual migration of the interface is a 
small movement in the direction normal to the interface that need not 

FIG. 1. An interface between a solid and a vapor undergoes a virtual motion. The 
magnitude of the virtual migration, 8rn , should be small, and may vary over the interface. 
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obey any kinetic law. The amount of the motion, 8rn, can differ from point 
to point over the interface. Associated with the virtual migration, the free 
energy varies by 8G. Define a thermodynamic force, 3s, as the free energy 
decrease associated with adding unit volume of atoms to the particle, 
namely, 

/ 
&>8rndA= -8G. (2.2) 

The integral extends over the interface area. The virtual motion, 8rn, is an 
arbitrary function of the position on the interface, and (2.2) uniquely 
defines the quantity & at every point on the surface; an explicit formula is 
given later. The quantity has a unit of pressure (force/area or 
energy /volume), and has been variably called driving pressure, driving 
stress, or driving traction. 

3.    Kinetic Law 

Let vn be the actual velocity of the interface in the direction normal to 
the interface (i.e., the volume of atoms added to the particle per area per 
time). The actual velocity is taken to be a function of the driving pressure. 
Specifically, the velocity is taken to be linearly proportional to the driving 
pressure: 

vn = L&>. (2.3) 

Here L is the mobility of the interface. This quantity will be used as a 
phenomenological parameter of the model, to be determined by comparing 
model predictions with experimental observations. Thermodynamics re- 
quires that the interface move in the direction that reduces the free energy 
G, so that L > 0. Extension to nonlinear kinetic relations can be made 
(e.g., Loge and Suo, 1996). 

The considerations above define the dynamics of surface motion. At a 
given time, the free energy variation determines the driving pressure, and 
the kinetic law updates the particle shape for a small time step. The 
process repeats for many time steps to evolve the surface. 

The driving force is defined at every point on the surface, which is then 
used to specify the kinetic law. Such a kinetic law is local in that the rate at 
a point only depends on the force at this point. By no means is such a law 
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universally correct. For example, crystal may grow at a step around a screw 
dislocation. The present approach is subject to the common restriction of a 
continuum theory: the theory applies when the length scale of interest is 
much larger than the length scale characteristic of defects. 

4.   Atomic Origin of Interface Migration Mobility 

Before continuing with the phenomenological treatment, we make a 
digression and consider briefly the atomistic origin of L. One can obtain L 
from an atomistic picture of the reaction process. Formulas obtained this 
way may give approximately correct dependence on variables such as 
temperature, with parameters such as activation energy fitted to experi- 
mental data. 

Consider, for example, an interface of two phases of the same composi- 
tion, e.g., a grain boundary. The interface moves as atoms leave one phase, 
cross the interface, and attach to the other phase. Turnbull (1956) showed 
that the interface velocity is linear in the driving pressure if £l&> <sc kT, 
where Ü is the atomic volume, k Boltzmann's constant, and T the 
absolute temperature. The interface motion involves the same atomic 
process as self-diffusion on the interface. The interface mobility L relates 
to the self-diffusivity on the interface D by L = £l2/3D/kT. The self- 
diffusivity is given approximately by D = vb2 exp(-q/kT\ where v is the 
frequency of atomic vibration, b the atomic spacing, and q the activation 
energy for one atom to jump from one position to another. 

This connection between L and D, however, is an oversimplification. 
For example, impurity atoms segregated to a grain boundary can affect L 
and D disproportionally. This empirical fact has long been used in ceramic 
sintering; impurities are added to inhibit grain growth without retarding 
densification. 

As another example, consider a single-element crystal in contact with its 
vapor. Atoms in the two phases exchange at the interface by evaporation 
and condensation. Mullins (1957) showed for this case L = 
p0Ct2(2Trm)-^2(kT)-2/2, where p0 is the vapor pressure in equilibrium 
with the flat solid surface, and m the mass per atom. The process 
considered by Mullins involves the rate of the atoms of the vapor hitting 
the surface, and the atoms of the solid emitting to the vapor. The reaction 
on the surface is instantaneous, with no activation barrier. In general, 
however, a multielement crystal and a vapor of several molecular species 
react on the interface with activation barriers. 
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B.   EQUATION OF MOTION WHEN SURFACE TENSION 

IS ISOTROPIC 

When surface tension is isotropic, the solid-vapor interface at a given 
time is usually a smooth surface in three dimensions. The surface has the 
properties commonly studied in differential geometry: the area of a sur- 
face element dA; the unit vector normal to the surface n, taken to direct 
the vapor phase; and the principal radii of curvature Rx and R2, taken to 
be positive for a convex particle. Of particular interest is the sum of the 
principal curvatures, 

1 1 

Associated with the virtual migration 8rn, the interface area varies by 

8A = JK8rndA 

and the particle volume varies by 

8V= J 8rndA. 

The integrals extend over the interface. 
When the surface tension is isotropic, the free energy is G = yA + gV. 

Consequently, associated with the virtual motion of the surface, the free 
energy varies by 

8G = f(yK + g)8rndA. (2.4) 

A comparison of (2.4) and (2.2) gives 

&> = -yK-g. (2.5) 

This equation expresses the driving pressure in terms of the geometric 
parameter, K, and the energetic quantities, y and g. As expected, y tends 
to drive the surface in the direction toward the center of curvature, and g 
tends to cause the solid to shrink if g > 0. 

A combination of (2.3) and (2.5) leads to 

Vn = -L(yK + g). (2.6) 

This partial differential equation governs the interface motion. 
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Equation (2.5) contains the special case ^= -yK, known as the 
Laplace-Young relation for liquid films (e.g., Isenberg, 1978), where & is 
the pressure difference between the two neighboring bubbles. This relation 
results from the equilibrium of a liquid film under the pressure difference 
and the surface tension. Such interpretations are misleading for a phase 
boundary m solid state. P 

C.   WEAK STATEMENT AND GALERKIN METHOD 

The partial differential equation (2.6) is not a good way to look at the 
general problem for several reasons. First, (2.6) is incorrect when surface 
tension is amsotropic. Second, because the problem in general has to be 
analyzed approximately, a partial differential equation need not be a good 
starting point. The following weak statement circumvents the difficulties of 
anisotropy and leads to the Galerkin method in numerical analysis. Other 
merits of the weak statement will become evident as the subject develops 

Completely ignore Section B, and start from Section A again. Replace 
the driving pressure <? in (2.2) with the interface velocity v by using the 
kinetic law (2.3), giving *   "   Y       g    e 

J —8rndA= -SG. (2.7) 

Make the following statement: the actual velocity, vn, must satisfy (2.7) for 
virtual migration 8rn of arbitrary distribution on the interface. Following 
the terminology of variational calculus, we refer to this as the weak 
statement of the problem. 

One may find an approximate interface velocity that satisfies (2.7) for a 
family of virtual motions (instead of arbitrary virtual motions). Obviously 
the larger the family, the more accurate the approximation. This consider- 

foHows t0 GaIerkin meth°d' a formaI Presentati0* of which 

Model the surface with n degrees of freedom, writing qx,...q for the 
generalized coordinates, and 4l,...qn for the generalized velocTries For 
example, a sphere has one degree of freedom, its radius; a rod has two 
degrees of freedom, its radius and height; a general surface may be 
modeled by an assembly of triangles, with the positions of the vertexes 
being the generalized coordinates. Describe a surface by expressing the 
position vector on the surface, x, as a function of two surface coordinates 
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Sj and s2, and the time t. Using the generalized coordinates, we express 
the position vector as x(s1,s2;q1,...,qn), with the time implicitly con- 
tained in the generalized coordinates. 

The free energy is a function of the generalized coordinates, 
G(q1,q2,q3,...). The generalized forces, ft,...,fn, are the differential 
coefficients of the free energy, namely 

8G = -ft 8qx -f2Sq2 /„ 8qn . (2.8) 

Once the free energy function is known, the generalized forces are 
calculated from f = -dG/dqt. 

The virtual motion of the surface, 8rn, is linear in the variations of the 
generalized coordinates: 

fi^-EL—WfcsEWfc. (2.9) 

The shape functions Nt depend on the generalized coordinates. The 
interface velocity is linear in the generalized velocities: 

Vn =   E ^Ai • (2.10) 

Substituting the above into the weak statement, (2.7), we obtain 

Ei^s<& = £/f8fc, (2.11) 
i, j i 

where 

,   N:N: 
Hij^f-y+dA. (2.12) 

Equation (2.11) holds for arbitrary virtual changes 8qt, so that the coeffi- 
cient for each 8qt must equal. Thus, 

E^74y=/;. (2-13) 
j 

Equation (2.13) is a set of linear algebraic equations for the generalized 
velocities. Once solved, they update the generalized coordinates for a small 
time step. The process is repeated for many steps to evolve into the 
surface. Because the matrix H and the force column / depend on the 
generalized coordinate column q, (2.13) is a nonlinear dynamical system. 
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The physical interpretation of the matrix H is evident from (2.13): the 
element of the matrix, Htj, is the resistant force in the ^-direction when 
the state moves at unit velocity in ^-direction. We will call H the viscosity 
matrix. From (2.12), H depends on the generalized coordinates but is 
independent of the generalized velocities or the positions on the interface. 
The viscosity matrix is symmetric and positive-definite. 

D.   GEOMETRIC VIEW 

One can visualize the above formulation in geometric terms (Sun et al 
1996, Yang and Suo, 1996). Imagine a hyperspace with the free energy as 
the vertical axis, and the generalized coordinates as the horizontal axes 
The free-energy function, G(qx ,q2 ,q3,...), is a surface in this space510 be 

called the energy landscape. A point on the landscape represents in 
general a nonequilibrium state of the system, described with a set of values 
of the generalized coordinates and a value of the free energy. The bottoms 
of valleys on the landscape represent equilibrium states of the system. 

A curve on the landscape represents an evolution path of the system 
Thermodynamics requires that the system evolve to reduce the free 
energy, and therefore the-evolution path be a descending curve on the 
landscape. Starting from any point other than a valley bottom on the 
landscape, infinite descending curves exist. Consequently, thermodynamics 
by itself does not set the evolution path. Nor does thermodynamics select 
one valley as a final equilibrium state among several valleys. The evolution 
path is set by thermodynamics and kinetics acting together. 

At a point on the landscape, the slopes of the landscape represent the 
generalized forces. The Galerkin procedure assigns a viscosity matrix H at 
every pontfon the landscape. The generalized velocities are determined 
by q - H !/, which gives the direction and magnitude of the incre- 
mental motion on the landscape. The evolution path is thus determined 
incrementally. 

This global, geometric view does not add any new information to the 
problem, but does give an intuitive feel for a complex system. If the energy 
landscape contains several valleys, the one that will be reached by the 
system as the final equilibrium state will also depend on kinetics. A change 
m the kinetic parameters, without changing the energy landscape, may 
shift the system from moving to one valley to another. An example is given 
in Section VLB. In the language of nonlinear dynamics, we say that the 
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change of kinetic parameters changes the basins of attraction. Clearly, this 
is a universal theme of material processing. 

E.   VARIATIONAL PRINCIPLE 

The following variational principle is equivalent to the weak statement 
in Section C. In numerical analysis, these two forms lead to an identical set 
of ordinary differential equations. In the remainder of the article, we will 
use the weak statement exclusively. The variational principle is included 
here for completeness. 

Let Z5 be a virtual interface velocity distribution, which need not satisfy 
any kinetic law. Associated with the virtual velocity, the free energy 
changes at rate G. Introduce a functional 

n = G+ [ — dA, (2.14) 

which is a combination of the virtual free-energy rate and a term associ- 
ated with the virtual rate. The functional is purely a mathematical con- 
struct, and has no clear physical meaning. Given an arbitrary virtual 
velocity distribution w, one can compute a value of II. 

The variational principle is now stated: Of all the virtual velocity 
distribution To, the actual distribution vn minimizes II. 

The proof of the principle follows. According to (2.2), the virtual free 
energy rate is 

G(cJ) = - j&TodA, 

which is linear in the virtual velocity. Consequently, the difference in II is 

r un r ">2 

U(w + vn) - n(u„) = G(Ö5) + J —äidA + j —dA. 

The actual velocity satisfies the kinetic relation vn/L = 3°. According to 
(2.2), the sum of the first two terms vanishes. Thus, 

7Ö2 

YKü> + un)-lKvn) = f — dA. 

This is nonnegative for any virtual velocity distribution, hence the proof. 
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F.   TRIPLE JUNCTION; EQUILIBRIUM OR NONEQUILIBRIUM 

1.    Force on Triple Junction 

If the solid particle is polycrystalline, the free energy becomes 

G = ysAs + ybAb+gV. (2.15) 

Here ys is the surface tension of the solid-vapor interface, yb the surface 
tension of the grain boundaries, As the area of the interface, and Ab the 
area of the grain boundaries. For simplicity, both surface tensions are 
taken to be isotropic. 

As an example, Figure 2 shows that a grain boundary and two surfaces 
form a triple junction, i.e., a line in the third dimension. The length of the 
junction is /, and the two surfaces meet at angle ^ (i.e., the dihedral 
angle). Move the junction by 8y and the surfaces by 8rn, resulting in a 
virtual change in the free energy, 8G. Define the driving force on the 
triple junction, /, and the driving force on the surface, &>, simultaneously 
by 

flSy + f&8rndA = -8G. (2.16) 

This is an extension of (2.2). 

We may postulate separate kinetic laws for the junction and surface 
motion: 

y = Ltf, vn = L&>, (2.17) 

where y is the velocity of the triple junction, L, the junction mobility, 
and L the surface mobility. Equations (2.16) and (2.17) complete the 
modification. 

One can find an explicit expression for the force on the triple junction. 
When the junction moves by distance 8 v, the area of the grain boundary 

FIG. 2. A triple junction formed by a grain boundary and two free surfaces. 
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changes by I8y, and the area of the two surfaces changes by 
-2cos(V/2)l8y. Consequently, associated with the virtual motion of the 
junction and the surfaces, the free energy changes by 

8G = l-2ys cos — + yb)l8y + j(ysK + g) 8rn dA.      (2.18) 

A comparison of (2.16) and (2.18) gives the expressions for the two driving 
forces: 

/=27scosy-7*,^= -ysK-g. (2.19) 

The driving force on the junction, /, has a clear interpretation: it is the 
sum of the surface tensions projected along the y-axis. In this example, 
because of symmetry, we only need to consider the motion in the v 
direction. If the junction can move in both x and y directions, there are 
driving forces in both directions. 

One can also include junction motion into the weak statement. Replace 
the forces in (2.16) with the velocities by using the kinetic laws (2.17), 
giving 

— l8y + f — 8rndA=- 8G. (2.20) 

The actual velocities, y and vn, satisfy (2.20) for arbitrary virtual motions, 
8y and 8rn. In this weak statement, the surface tension for both the grain 
boundary and the surfaces can be anisotropic, provided the free energy G 
is evaluated by a surface integral of the surface tension. 

2.   Equilibrium Triple Junction 

The triple junction is commonly assumed to be in equilibrium at all 
times, even when the surfaces still move. That is, the driving forces on the 
triple junction vanish at all times. For the present example, setting / = 0 
in (2.19) results in the well-known expression for the equilibrium dihedral 
angle %: 

cos — = . (2.21) 
2       2y5 

This relation fixes the slope of the surfaces at the junction. 
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The assumption of equilibrium junction is justified by the relative rate of 
the junction motion and surface motion. It only takes a small „umber of 
atomic adjustments to reach the equilibrium angle, so that the time 
needed for the overall grain shape change is limited by the surface motion 
The idea can be made definite as follows. Let d be a length scale that one 
hkes to resolve from the model, e.g., the depth of the surface groove 
caused by the grain boundary underneath. The effect of the junction 
mobility is negligible if L,d/L » 1. J 

Assume equilibrium junction is equivalent to prescribing an infinitely 
arge junction mobility. Consequently, the first term in the weak statement 
2.20) drops, which then becomes identical to (2.7). The weak statement 

(2.7) simultaneously determines the surface velocity and enforces the triple 
junction equilibrium. In applying the Galerkin procedure to the weak 
statement (2.7) one need not fix the dihedral angle to the equilibrium 
vahie. Rather, the equilibrium dihedral angle comes out as a part of the 
solution, approximately in a short time, consistent with the level of 
approximation of the entire surfaces. 

In the terminology of variational calculus, the equilibrium dihedral 
angle is a natural boundary condition, which is enforced by the weak 
statement itself. The position of the end of the surface is an essential 
boundary condmon, which must be enforced in addition to the weak 
statement. 

3.    Nonequilibrium Triple Junction 

Situations exist where the junction mobility plays a role. For example 
impurities segregated to the junctions may reduce the junction mobility' 
retarding the overall surface motion. The effect should be pronounced if 
the gram size is very small. 

From (2.21), the junction may reach equilibrium only when yh < 
2y5-that is, when the grain boundary is energetically more favored than 
two surfaces. If yb > 2y5, equilibrium will not be reached until the grain 
boundary is completely replaced by two parallel surfaces. In this case a 
finite junction mobility prevents the junction from running at an infinite 

wh^lheKTmpleuinVOlVeS at°miC decohesion »long a grain boundary 
when the body is subject to a tensile stress normal to the grain boundary 
The triple: junction may be out of equilibrium, and the dihedral angle 
between the two free surfaces approaches 0°, instead of the equilibrium 
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value of (2.21). The unbalanced force at the triple junction may drive a 
reaction that leads to the environmentally-assisted cleavage. Section VTII.C 
discusses a similar situation. 

HI.   Interface Migration Driven by Surface Tension 
and Phase Difference 

This section gives examples of interface migration under surface tension 
and free energy density differences between the two phases. Finite ele- 
ment schemes have been formulated on the basis of the weak statement 
(Cocks and Gill, 1995; Du et al., 1996; Sun et ai, 1997). It is too early to 
judge them critically. Instead, this section gives an elementary demonstra- 
tion of the Galerkin procedure, and describes several analytical solutions. 

A.   SPHERICAL PARTICLE IN A LARGE MASS OF VAPOR 

When a small solid particle is introduced into a large mass of a vapor, 
the particle may change both shape and volume, as atoms evaporate to, or 
condense from, the vapor. We start with the simplest situation where the 
surface tension is isotropic and the solid particle is spherical. The system 
has only one degree of freedom, the radius of the sphere. 

1.    Free Energy 

The introduction of a spherical particle of radius R into a large mass of 
vapor changes the free energy by 

4 
G = 4irR2y + T irR3g. (3.1) 

Here y is the surface tension, and g the free-energy density difference 
between the two phases; y is always positive, but g can be either positive 
or negative. If g > 0, the volume term reduces the free energy when the 
particle shrinks. If g < 0, the volume term reduces the free energy when 
the particle grows. We will concentrate on the case g < 0. Figure 3(a) 
sketches the free energy as a function of the particle radius. As R 
increases, G first increases when the surface term in (3.1) dominates, and 
then decreases when the volume term dominates. 
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(a) 

Ro=Ro 

(b)   
o — 

*c R 

FIG. 3. A small solid particle in contact with a large mass of its vapor <g < 0) a) Free 
energy as a funcfcon of the particle radius, b) Particle % different inhwÄÄ^ 

The free energy maximizes at a finite particle radius, Re. The signifi- 
cance of this maximum is readily understood. Imagine a particle of radius 
R *R Thermodynamics requires that the particle change size to reduce 
Cr. If R < Rc, the particle shrinks to reduce G.UR>Re, the particle 
grows to reduce G. The critical particle radius is determined by setting 
dG/dR = 0, giving J 6 

Rc= -2- 
g (3.2) 

The two energetic parameters, y and g, have different dimensions; their 
ratio defines this length. 

2.    Kinetics 

Section TLB applies because the surface tension is isotropic. The driving 
pressure on the surface of the spherical particle of radius R is 

<?> = 
2y 

(3.3) 
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The kinetic law (2.3) relates the surface velocity to the driving pressure: 

dR I2y       \ 
-=-L(-+g). (3.4) 

This ordinary differential equation governs the particle radius as a func- 
tion of the time, R{t). The energetic competition shows up again: the 
particle growth rate is positive if R > —2y/g, and negative if R < —2y/g. 

Let RQ be the particle radius at time t = 0. The solution to (3.4) is 

(R - Rn) + Rr In 
R-Rc 

RQ — Rc 
= -Lgt. (3.5) 

Figure 3(b) sketches the radius as a function of the time. The behavior 
depends on the initial radius. A supercritical particle (R0 > Rc) grows with 
the time without limit. A subcritical particle (R0 < Rc) shrinks and 
disappears. 

B.   ANISOTROPIC SURFACE TENSION: ROD- OR 

PLATE-SHAPED PARTICLES 

In the example above, the free energy alone decides whether the 
particle grows or shrinks, and the kinetics sets the time. This division in 
roles between energies and kinetics comes about because the system has 
only one degree of freedom. As discussed in Section II.D, when the system 
has more than one degree of freedom, the free energy alone does not 
determine the evolution path or the final equilibrium state. The following 
example has two degrees of freedom, and is used to illustrate the Galerkin 
procedure. 

Imagine a crystal having anisotropic surface tension such that it grows to 
a prism with a square cross section. When a small particle of such a crystal 
is introduced into its vapor, it has two degrees of freedom: the base side B 
and the height C. The surface tensions on the prism bases and sides are yl 

and y2, and the mobilities are L1 and L2. When the crystal grows by unit 
volume at the expense of the vapor, the phase change alone increases the 
free energy by g. The total free energy of the system, relative to the vapor 
without the particle, is 

G(B,C) = 27lB
2 + 4y2BC +gB2C. (3.6) 
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Associated with the virtual changes 8B and 8C, the free energy varies by 

SG = (47lB + 4y2C + 2gBC) 8B + (4y2B + gB2) SC.      (3.7) 

The kinetic term on the left-hand side of (2.7) is 

rv BBC CB2 

J -8rndA = ~8B + —8C. (3.8) 

The weak statement requires that the sum of the two equations above 
vanish. Collect the coefficients of 8B and 8C, giving 

These are coupled ordinary differential equations, to be integrated numer- 
ically once the initial particle dimensions are given. No numerical results 
will be presented here. 

Brada et al (1996) have used this approach to study coarsening of grains 
of a crystal with high surface-tension anisotropy. See Carter et al (1995) 
for a demonstration of the effects of surface-tension anisotropy. 

C.   SELF-SIMILAR PROFILE: THERMAL GROOVING 

In a polycrystalline particle, a grain boundary intersects with the particle 
surface, forming a triple junction, Figure 2. When heated, the surface 
grooves at the triple junction. The problem was solved by Mullins (1957) 
The surface motion reduces the grain-boundary area but increases the 
surface area, so that the total free energy decreases. Mass relocates by 
either evaporation or surface diffusion. This section summarizes Mullins' 
analysis for evaporation; Section VI.C will summarize his analysis for 
surface diffusion. When the groove depth d is so small that gd/y -> 0, the 
effect of g on grooving is negligible. Mullins assumed that g = 0, namely 
the vapor is in equilibrium with the flat solid surface. The groove depth is 
taken to be much smaller than the grain size, so that the two grains in 
Figure 2 are infinitely large. This is a two-dimensional problem in the 
plane normal to the triple junction. 

In Figure 2, the *-axis coincides with the surface remote from the 
groove, and the y-axis with the grain boundary. Describe the surface shape 
at time t by function y(x, t\ The curvature of the surface is 

K= d2y/dx2 

[l + (dy/dx)2]3/2' 
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The velocity normal to the surface is 

dy/dt 
Vn r 2i1/2 • 

[l + {dy/dxf] 

The equation of motion (2.6) becomes 

dy d2y/dx2 

— = Lys =■. (3.10) 
dt 1 + {dy/dxf 

The initial and boundary conditions are as follows. The surface is 
initially flat, i.e. 

y(x,0) = 0. (3.11) 

The surface remote from the groove is immobile at all times: 

3>(±«,O = 0. (3.12) 

The triple junction is taken to be in equilibrium during grooving, so that 
the two surfaces meet at the equilibrium dihedral angle, %, given by 
(2.21). This dihedral angle fixes the slope of the surface at the triple 
junction: 

d cos(^e/2) yb 
— y(0,t) =m=    . , T   ,„.   = 770. (3.13) 
dxn sm(^/2)       (47f

2-7?)/ 

The partial differential equation (3.10), the initial condition (3.11), and the 
boundary conditions (3.12) and (3.13) determine the evolving surface 
profile, y(x, t). 

The initial geometry has no length scale, but the time and the mobility 
set a length scale, ^/L%t. Consequently, the groove grows with a self- 
similar profile. Define the dimensionless coordinates: 

X=-fL=,Y=-fI=. (3.14) 

Describe the groove profile by a function Y(X). The partial differential 
equation (3.10) becomes an ordinary differential equation 

d2Y 
2—7 + 

dX2 ■ * m x^-r)-> ».is 

The initial condition (3.11) and the boundary condition (3.12) both become 

Y(oo) = 0. (3.16) 
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The boundary condition (3.13) becomes 

~Y(0)=m. 
dX (3.17) 

The boundary-value problem (3.15)-(3.17) is integrated numerically (Sun 
et al, 1997). Figure 4 shows the groove profile for various dihedral angles. 
For a system with a larger ratio y„/y5, the dihedral angle % is smaller, 
and the groove is deeper. 

When the ratio yb/7s is small, the slope of the surface, dY/dX, is small 
Dropping the high-order term (dY/dX)2 in (3.15), the ordinary differential 
equation is linear, so that the groove depth must be linear in m. Mullins' 
(1957) calculation showed that, under the small-slope approximation, the 
groove depth is 

d ~ 1.13my/Lyst. (3.18) 

Figure 5 plots the numerical solutions of the groove depth determined by 
both the exact and the linearized equations, indicating that Mullins' linear 
approximation is good for most purposes. The exact nonlinear solution has 
been used as a benchmark to check the accuracy of a finite element code 
(Sun et al, 1997). 

FIG. 4. The profile of the groove over a grain-boundary caused by evaporation. 
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— Exact Solution 

— Mullins Linearized Solution 

0.75 

*   *»   0.5 I? 
0.25 

FIG. 5. The groove depth as a function of parameter m, which relates to the ratio 7^,/% 
by (3.13). 

D.   STEADY-STATE PROFILE 

1.    General Solution 

Mullins (1956) studied the steady-state surface motion, i.e., the entire 
surface moves in the same direction at the same velocity. The motion is 
motivated by surface tension, and the mass transport mechanism is evapo- 
ration-condensation. Both the surface tension and the mobility are taken 
to be isotropic. The governing equation is (2.6), setting g = 0. Figure 6 
shows a surface moves in the y-direction at velocity v. The coordinates x 
and y move with the surface. A plane problem is considered where the 
surface shape is invariant along the axis normal to the x-y plane. 

y* 

 *-* 

FIG. 6. Geometry of a steadily moving surface. 
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Let ds be the curve element, 0 the angle of the element from the x-axis. 
Surface tension drives the surface to move toward the center of the 
curvature. Consequently, the surface must concave in the direction of the 
velocity, and the slope is restricted between - TT/2 < 6 < TT/2. According 
to our sign convention, the curvature, K = dd/ds, is positive on the entire 
curve, and the normal surface speed is vn= -v cos 0. Equation (2.6) 
becomes 

Lydd 
(3.19) v cos 0 = 

ds 

Observing that cos 0 ds = dx, one readily integrates the above equation, 
giving 

Ly 
'      c0, (3.20) x = 0  + Xr 

V 

where x0 is a constant to be determined by the boundary conditions. 
Similarly, with sin 0 ds = dy, one integrates (3.19) and obtains 

Ly 
y = ln(cos0) +y0, (3.21) 

where y0 is another constant to be determined by the boundary conditions. 
Equations (3.20) and (3.21) together describe the shape of the steadily 
moving surface, with 0 as a parameter. The following-paragraphs illustrate 
simple applications. 

2.    Steady-State Grooving 

When the groove size becomes appreciable relative to the grain size, the 
grooves of two adjacent grain boundaries interact, and the self-similar 
solution in Section III.C is no longer valid. The particle surface may 
recede with a profile and velocity independent of the time. Consider an 
idealized geometry with periodic grain boundaries of spacing D, Figure 7. 
The dihedral angle ^ relates to the ratio yb/ys by (2.21). The surfaces 
move down to decrease the area of the grain boundaries, with no further 
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change in the surface area. The slopes are 0 = ±(TT - ty)/2 at the two 
adjacent triple junctions x = ±D/2. With these as the boundary condi- 
tions, (3.20) determines the velocity: 

ü-dr-^)-^, (3.22) 

which is inversely proportional to the grain size. Equation (3.21) deter- 
mines the groove depth: 

D *-*'■ °-23) 

3.    Velocity of an Abnormally Growing Grain 

Under certain conditions, in a polycrystal one grain grows much larger 
than the others, at the expense of the neighboring grains (Hillert, 1965). In 
Figure 7 replace the vapor phase with the large grain, and keep the small 
grains of size D. For one reason or another, the small grains do not grow, 
but the boundary between the large grain and the small grains moves with 
the mobility Lb. All the grain boundaries have the same surface tension 
yb, so that the dihedral angle is ^ = 2TT/3. Equation (3.22) becomes 

7rLbyb 
» = -^~. (3.24) 

The large grain grows at a velocity inversely proportional to the size of the 
small grains. 

E.   GRAIN-BOUNDARY MIGRATION IN A THIN FILM; EFFECT OF 

SURFACE EVAPORATION 

Consider a polycrystalline film on a single crystal substrate. The grains 
have a columnar structure. Due to crystalline anisotropy, some grains have 
lower film-surface tension and film-substrate interface tension than other 
grains. When the film is heated, the grains with low combined surface and 
interface tensions grow at the expense of other grains. The survival grains 
may have (in-plane) diameters much larger than the film thickness. 

For example, Thompson et cd. (1990) studied a thin Au film on a (100) 
surface of NaCl substrate. When the film is deposited at room tempera- 
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ture, the Au grains are very small and are of several orientations. After 
anneal at 325°C for three hours, the grains grow and the survival grains are 
predominantly of (lll)Au_|| (OOl)NaCl, with two in-plane orientations, 
[110]Au || [110]NaCl and [110]Au || [HOjNaCl. The two types of grains are 
crystallographically equivalent, and therefore have the same free energy. 
When the equivalent grains impinge, they stop growing. The NaCl sub- 
strate has a fourfold symmetry, and the (111) Au grains have a threefold 
symmetry. Minimization of the free energy in this case does not require 
lattice matching. 

Yet another phenomenon may intervene: grooving at the intersections 
of the grain boundaries and the film surface may break the film. Assuming 
that the grain boundaries are immobile, Srolovitz and Safran (1986) and 
Miller et al. (1990) showed that the film breaks into islands if the ratio of 
the grain size to the film thickness exceeds a critical value. Miller et al. 
(1990) demonstrated that the prediction is consistent with the observation 
of a Zr02 film on a single crystal A1203 substrate. 

Clearly the two processes—grain-boundary migration and surface groov- 
ing—compete to determine the fate of a polycrystalline film. Grain- 
boundary migration may lead to a large-grained, continuous film. Surface 
grooving may break the film into islands. Mullins (1958) analyzed the effect 
of grooving on grain-boundary motion, where the surface grooves via 
surface diffusion. He obtained a steady-state solution for a moving triple 
junction, but left the velocity of the motion undetermined because the 
grain-boundary motion was not analyzed. In simulating grain growth in 
thin films, Frost et al. (1992) modeled the effect of grooving by setting a 
threshold curvature in the kinetic law, below which grain boundaries 
remain stationary. 

Brokman et al. (1995) analyzed a grain boundary moving in a thin sheet, 
including both surface diffusion and grain-boundary migration, which 
allow them to determine the steady-state velocity. In an independent study, 
Sun et al. (1997) analyzed a similar problem with either surface diffusion 
or surface evaporation. The following discussion draws on these studies, 
assuming surface evaporation. Surface diffusion will be discussed in Sec- 
tion VI.D. 

1.    Grain-Boundary Motion When the Surface Remains Flat 

First imagine that the surface of the film is immobile and remains flat as 
the grain boundary migrates, Figure 8(a). The in-plane grain size is much 
larger than the film thickness, so that we focus on one grain boundary and 

204 



Motions of Microscopic Surfaces in Materials 219 

(a) 
Yf 

Ys
+ 

Yi+ 

/////////////////// 

Ys-Li 

(b) 

Ys+Ls+ 

Yi+ 

/////////////////// 

FIG. 8. A grain boundary migrates in a thin film, a) The free surface is immobile and 
remains flat, b) The free surface grooves due to evaporation. 

ignore all the others. The two grains, labeled as + and -, have different 
surface tensions 7/ and y~, and interface tensions 7/" and yf . Denote 
the grain-boundary tension by yb, and the grain-boundary mobility by Lb. 
The grain boundary is taken to migrate to the right. 

Because the film surface and the film-substrate interface are immobile, 
at the triple junctions the surface tensions do not balance in the vertical 
direction. Junction equilibrium in the horizontal direction determines the 
two angles in Figure 8(a): 

sin <f) = 
Ji ~ Ji 

lb 
, sin 0O = 

% (3.25) 
Jb 

In the steady-state motion, the grain boundary is concave to the right, so 
that the two angles must satisfy <f> > 60. Using (3.25), this condition 
becomes 

7s + %• < ys
+ + %+ (3.26) 

Thus, grain - must have smaller free energy than grain + for the grain 
boundary to migrate to the right. 
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The general solution (3.20) determines the grain-boundary velocity: 

_ L
byb(4> - e0) 

u 1 • (3.27) 

In the limiting case when both cf> and 60 are small, (3.25) and (3.27) give 

~h 

This limiting result reproduces that of Thompson et al. (1990). 

2.    Simultaneous Grain-Boundary Migration and 
Surface Evaporation 

Now two kinetic processes occur simultaneously: the grain boundary 
migrates at mobility Lb, and the surface evaporates at mobility Ls, Figure 
8(b). Assume that the vapor is in equilibrium with a flat-film surface but 
atoms at the triple junction can evaporate. The entire configuration moves 
at a uniform speed v to the right. All the moving surfaces must concave in 
the direction of the velocity. The surface of the new grain must be straight 
because a curved surface would concave to the wrong direction. Evapora- 
tion causes the new grain to be thinner than the parent grain by d 

Equilibrium at the top triple junctions in both horizontal and vertical 
directions requires that 

sin    <^>2 + ^)2-(7;)2  + 
^yj >%   sin a = yb cos 0.      (3.28) 

w^"8^5^6 interfaCe iS immobile> so that the angle <f> is the same as 
m (3.25). The steadily moving grain boundary must concave in the direc- 
tion of the velocity. Consequently, the two angles must satisfy <b > 6 
namely J ^ 

r+_T-. w2 + (r7)2-(r;)2 
%

      7i > 2^ • (3'29) 

An application of (3.20) to the grain boundary and to the surface of 
gram + gives 

v(h - d) = Lbyb{<j> - 6),vd=L + ys
+a. 

206 



Motions of Microscopic Surfaces in Materials 221 

Solving the equations, we have the velocity 

1 
v = -[Lbyb(<!>-d)+L + y;a] (3.30) 

n 

and the groove depth 

d 1 

h     ^    LbJb(<f>-d) 
(3.31) 

1 + 
Wys

+* 

The thickness of the new grain depends, among other things, on the 
mobility ratio. 

The effect of surface evaporation on the grain-boundary motion may be 
appreciated as follows. In the limiting case Ls «c Lb, the groove depth is 
negligible compared to the film thickness (3.31). Even in this case, a tiny 
amount of evaporation significantly affects the grain-boundary motion by 
rotating the surfaces at the triple junction. Take, for example, y+ = y~ = 
yb. Without evaporation (Figure 8(a)), 0O = 0°; the grain boundary can 
move steadily to the right if <f> > 0°, i.e., if the two grains have infinitesimal 
differences in the film-substrate interface tensions. With evaporation (Fig- 
ure 8(b)), 0 = 30°; the grain boundary can move steadily to the right if 
<f> > 30°, i.e., if the two grains have a finite difference in the film-substrate 
interface tensions. 

On the basis of the weak statement (2.7), Sun et al. (1997) used finite 
elements to simulate the non-steady motion. When <f> > 6, an initial 
configuration quite different from the steady-state quickly settles down to 
the steady-state. When <f> < 6, the grain boundary drags the triple junction 
toward the substrate, and finally breaks the film. 

F.   STEADY-MOVING INTERFACE DRIVEN BY SURFACE TENSION 

AND PHASE DIFFERENCE 

Under the small slope assumption, Brokman et al. (1995) gave an 
approximate steady-state solution for an interface driven by both surface 
tension and phase difference. The exact steady-state solution to the full 
nonlinear equation (2.6) follows. The problem has a length scale, 

/ = 7/g. (3.32) 
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With the reference to Figure 6, v„ = -vcosd and K = dd/ds, (2.6) 
becomes 

ds dd 

T = ccos 0-1' (333) 

with the dimensionless constant being 

v 

Noting that dx = cos ds and dy = sin 0 ds, one can integrate (3.33) to give 

1 

(3.34) 

.     . + -f,    c2 > 1 
c - cos e   i     / 

}> 1 y0 
y = - - In \c cos Ö - 1| + —. (3.35) 

Here x0 and v0 are integration constants to be determined by boundary 
conditions. 

IV.   Interface Migration in the Presence of Stress and Electric Fields 

In many material processes, elastic and electrostatic fields allow addi- 
tional means of free-energy variation. For example, during a phase transi- 
tion, the difference in the crystalline structures of the two phases induces a 
stress field (e.g., Eshelby, 1970; Abeyartne and Knowles, 1990; Lusk, 1994; 
Rosakis and Tsai, 1994). In a polycrystalline film, grains of different 
orientations have different elastic energy densities due to elastic or plastic 
anisotropy (e.g., Sanchez and Arzt, 1992; Floro et ai, 1994). In a ferroelec- 
tric crystal, domains of different polar directions have different elastic and 
electrostatic fields (e.g., Pompe et al, 1993; Roytburd 1993; Jiang, 1994). 

The main concepts in Section ILA still apply, with the modification that 
the free energy G includes the elastic energy and electrostatic energy. 
This, in turn, requires that the stress and electric fields be solved as 
boundary-value problems. After the fields are solved and the free energy 
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G computed, (2.2) defines the driving pressure on an interface, &>. The 
kinetic law (2.3) then updates the position of the interface. 

The weak statement (2.7) still applies. A two-step finite element method 
would proceed as follows. At a given time, the first step solves the 
boundary-value problem of the stress and electric fields by using a conven- 
tional finite element code. The second step updates the interface position 
according to (2.13), where the driving forces on interface nodes can be 
calculated with a procedure described by Socrate and Parks (1993), and the 
viscosity matrix calculated according to (2.12). The whole procedure re- 
peats for the next time increment. The approach would allow a relatively 
crude mesh to determine the elastic and electric field. 

Often, the mismatch strain is too large to be accommodated elastically, 
and dislocations appear to partially relieve the stress. Similarly, electric 
charge carriers diffuse to partially accommodate the polari2ation mis- 
match. Finite element approach could also treat relaxation due to com- 
bined plastic deformation, electric conduction, and interface migration. 
These important effects are beyond the scope of this article and will 
be ignored. This section collects basic equations and gives elementary 
demonstrations. 

A.   FREE ENERGY 

1.    Field Equations 

Subject a solid insulator to a field of displacement u and electric 
potential <f>. The strain tensor e and the electric field vector E are the 
gradients: 

etj-2(uU + uJ>i)>   Ei= "*•'■ (41) 

The conventional index notation is adopted. The insulator is separated 
into domains by interfaces (or domain walls). Consider an interface be- 
tween two domains labeled as + and —, with the unit vector normal to the 
interface, n, pointing to domain +. Force t and charge a> are externally 
supplied on per unit area of the interface. The body force and the space 
charge inside the domains are taken to be negligible. In a domain both 
stress tensor a and electric displacement vector D are divergence free: 

Oy./ = 0,    Du = 0. (4.2) 
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Across the interface, they jump by 

».■[*;7-*</]='/.   ni[D--D + }= -<». (4.3) 

Applying the divergence theorem, one obtains 

/*iui dA = I Vi^ii dV,   I (o(f>dA = I£>,£,. dV. (4.4) 

The integrals extend over the interface area A and the volume V. The 
equations above hold for any constitutive law. 

2.    Free-Energy Density Function 

We will make the standard local equilibrium assumption: a free-energy 
function exists for every phase in the crystal, even though the crystal as a 
whole is not in equilibrium. At a fixed temperature, the Helmholtz free 
energy per unit volume of a phase, W, is a function of the strain and the 
electric displacement, W(e,D). When the state of the crystal varies, the 
energy density varies by 

dW=crijdeji+EidDi. (4.5) 

Once the energy density function is prescribed, the field equations and the 
boundary conditions define the boundary-value problem. 

The crystal also stores energy in interfaces. Denote the surface energy 
per unit area of an interface by 7. An interface is assumed to be a sharp 
transition within a few atomic layers, so that electro-mechanical field is 
unaffected by the interface tension, and the interface tension unaffected 
by the electro-mechanical field. 

3.    Free Energy of a Polydomain Crystal 

Prescribe a distribution of traction t and electric potential <f> on the 
external surface of the crystal. On the part of the surface where the 
electric potential is not prescribed, e.g., the interface between the crystal 
and the air, we assume that negligible electric field lines escape from the 
crystal. This is a good approximation for a crystal having a large permittiv- 
ity, where the prescribed electric potential does work on the crystal, not on 
the air. 
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The combination of the energy function and the field equations defines 
an electro-mechanical boundary-value problem. Once the field is solved, 
the Gibbs free energy of the entire crystal is calculated from 

G = f ydA + JlVdV- J <j>o)dA - j' tiUidA. (4.6) 

The first integral extends over the interfaces, the second over the volume 
of the body, the third over the potential-prescribed surface, and the fourth 
over the traction-prescribed surface. 

4.   Deep-Well Approximation 

So far, the free-energy density W can be an arbitrary function of the 
electric displacements and strains. A useful approximation has often been 
adopted. Figure 9(a) illustrates the free-energy density for a one- 
dimensional model of a ferroelectric crystal at a fixed temperature. When 
the temperature is far below the Curie point, the free-energy density has 
two deep wells at Ds and — Ds, corresponding to the spontaneous polar 
states. Due to crystal symmetry, the spontaneous states have the same free 
energy, g. Figure 9(b) shows the D-E curve derived from the free energy 
function, E = dW/dD. The peak, Ec, is the field needed to switch polar- 
ization uniformly over the entire crystal, which is often much larger than 
the field needed to cause domain wall motion. Consequently, the state in 
each domain is near one of the spontaneous states, with approximately a 
linear D-E relation. 

Consider in general a spontaneous state with the strain e(J), the electric 
displacement D(s), and the Heimholte free energy per unit volume g(s). 
Expand the free energy density function by the Taylor series around this 
spontaneous state, retaining up to the quadratic terms: 

Wi» = gis) + Lcljtfaj - etf)(ekl - 4?) 

+ \ßÜKDl-D\»KDk-DP) 

The first-order terms vanish because the stress and the electric field vanish 
at the spontaneous state. The coefficients C, ß, and h characterize the 
elastic, dielectric, and piezoelectric responses near the spontaneous state. 
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a) 

b) 

*-D 

FIG. 9. a) The free-energy density as a function of the electric disDlacemenr Th* fr« 

temperature b) The elastic field vs electric displacement curve. Only the linear oarts of the 
curve near the spontaneous states are realized in a crystal. P 

The stress and the electric field are differential coefficients, (4.5), so that 

(4.8) 

(4.9) 

These«.linear relations are valid inside each domain. Together with the field 
equations, they define a linear, coupled, electro-mechanical boundary-value 
problem. J 
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B.   ELLIPSOIDAL TRANSFORMATION PARTICLE IN INFINITE 

MATRIX UNDER REMOTE LOADING 

Numerical analysis is usually required to solve the boundary-value 
problem above. Fortunately, many analytic solutions exist for an ellipsoid 
inclusion in an infinite matrix subject to remote loads; see Osborn (1945) 
for dielectric, Eshelby (1957) for elastic, and Dunn and Wienecke (1996) 
for piezoelectric inclusions. The shape of ellipsoids is versatile enough to 
model many phenomena. A nice feature common to this class of problems 
is that all fields inside the ellipsoid are uniform. Here we will not list these 
solutions, but will discuss the calculation of the free energy. The discussion 
parallels that of Eshelby (1957) for an elastic inclusion. 

Consider a transition from one solid phase to another. Without the 
constraint of the parent phase, the new phase would have a spontaneous 
strain e5, a spontaneous electric displacement Di, and a free energy change 
per volume g. All the three quantities are relative to the parent phase. 
When a small particle of the new phase grows inside the parent phase, 
both phases have stress and electric field. No dislocations, free charges, or 
other defects are present to relieve the field. Model the new phase particle 
by an ellipsoid, and denote its surface area by A and volume by V. Model 
the matrix as an infinite medium, and load it such that a uniform stress 
cr^ and a uniform electric field Ef prevail far away from the particle. The 
free energy of the matrix in the absence of the particle, remotely loaded as 
described above, is the reference state. The free energy G defined by (4.6) 
is the sum of five contributions. 

a) Surface energy 

The phase boundary increases the free energy by 

Gs = fydA. (4.10) 

The integral extends over the ellipsoid surface. When the surface tension 
is isotropic, Gs = yA. The surface energy resists particle growth. 

b) Energy due to phase difference 

When both phases are free from the stress and electric fields, the 
free-energy change due to the phase difference is 

GP - gV. (4.1D 
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In^our sign convention, the phase difference resists particle growth if 

The following three  terms arise from various fields. Owing to the 
lmeanty of the problem, the free energy must be a bilinear form of the 
spontaneous quantities e<. and D* and the applied loads <r.f and E* 
They may be grouped according to their physical significance. 

4>~ " * tke aPPlkd lmd thmUgh *~ Stmin a"d *"** 
The work done by the applied load on the spontaneous strain and 

electric d1Splacement changes the free energy by 

G„--(<rife!J+EfD!)V. (4.12) 

^positive work reduces the free energy, and thereby motivates particle 

d) Energy due to strain and polarization misfit 

In the absence of the applied loads, the spontaneous strain and electric 
displacement cause fields in the matrix and the inclusion. Let <,' and E' 
be the fields m the mclusion; they are linear in 4 and Df, and varioui 
coeffictents may be found in the above cited papers. The free-energy 
change due to the misfit is c"wgy 

1 
GM= - ji'ijefj + E[D!)V. (4.13) 

This contribution is a positive-definite quadratic form of ef, and D?  and 
resists particle growth. l] ' ' 

e) Energy due to heterogeneity {i.e., modulus difference) 

On^hnH6^0 infi«nite b°dieS' CaCh SUbjeCt t0 < and *iA at ^e infinity. 
One body is an infinite matrix without inclusion/and the other body is an 
infinite matrix containing an ellipsoidal inclusion. The constitutive laws are 
given by (4.8) and (4.9) with the spontaneous strain and e^fi^ 
ment removed; C, ß, and h are moduli for the matrix, and C* ß* and h* 
for the mclusion^The first body has uniform strain e and electric di place- 
ment D everywhere, and the second body has strain e* and electric 
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displacement D* in the inclusion. The free-energy difference between the 
two bodies is 

GH - -\[(ctJ„ - crJM)etJs„ + ( A7 - ApA^; 

+ (A*/ " h*kl)(eklDf + e%£>•)] K. (4.14) 

This contribution is quadratic in ar-f  and Ef, and either motivates or 
resists particle growth, depending on the relative moduli of the two phases. 

C.   GROWTH OF A SPHERICAL PARTICLE OF DILATION 

As an illustration, consider two phases of an identical chemical composi- 
tion but with different crystalline structures. Without the constraint of the 
parent phase, the new phase would have a pure volume expansion with 
linear strain es, and a free-energy change per volume g, both being 
relative to the parent phase. The parent phase is loaded remotely by a 
hydrostatic stress a. The electric effect is absent. We will assume that the 
new phase grows like a spherical particle in an infinite matrix. The system 
has one degree of freedom, the radius of the particle, R. Such an 
assumption excludes shape change, which may be important in some 
phenomena; for example, Johnson and Cahn (1984) showed that 
the spherical particle is unstable against shape change under certain 
conditions. 

The elastic stress field for a spherical inclusion in an infinite matrix can 
be readily solved. For simplicity, we first assume that the two phases have 
similar elastic constants, with Y being Young's modulus, and v Poisson's 
ratio. The free energy change due to the introduction of the particle into 
the matrix is 

4 / Ye2.   \ 
G(R) = 4<rrR2y + - vR3 \g - 3o~es + —-   . (4.15) 

The physical significance of each item is evident from the previous 
discussion. 

The free energy has the same dependence on the radius as in the 
problem studied in Section III.A, so that the previous discussion applies. 
The driving pressure is given by 

dG 2y Ye2 

0ö= . = g + 3ae  - . (4.16) 
4rrR2 dR R      6 s      1 - v 
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The radius changes at rate 

(4.17) 

The solution to this ordinary differential equation is similar to (3.5). 
Consider the case that the elastic constants for the two phases are 

different. Denote the bulk modulus and shear modulus of the parent phase 
by B = 7/3(1 - 2v) and p = 7/2(1 + „), and B* and fi* for the corre- 
sponding quantities for the particle. The fourth term in (4.15) should be 
modified to 

2 

A fifth term should be added to (4.15), 

(4.18) 

(4.19) 

This term motivates particle growth if the new phase has a lower bulk 
modulus than the parent phase. 

D.   GROWTH OF A 180° DOMAIN IN BARIUM TITANATE 

Barium titanate (BaTi03) undergoes a phase transition at 130°C. Fig- 
ure 10 shows the unit cells of the two phases. Above 130°C, the crystal is 
cubic, and the ions lie symmetrically in the unit cell. Between 0 and 130°C, 
the crystal is tetragonal, and the ions lie asymmetrically in the unit cell' 
We next concentrate on the changes at a fixed temperature between 0 
and 130°C. 

Depending on the position of the titanium ion relative to the center of 
the unit cell, the crystal may have polar direction of any one of the six 
variants. A load may shift the position of the titanium ion, and thereby 
rotate the polar axis from one direction to another. An electric field may 
rotate the polar direction by either 180° or 90°, but a stress may only rotate 
it by 90°. A 180° polar rotation does not result in any strain; a 90° polar 
rotation results in a strain. 
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paraelectric, T>130°C 

Uli4* 

ferroelectric, 0°C < T < 130°C 

Ba2+ O °2" 
FIG. 10. The crystal structures of barium titanate (BaTi03). The high-temperature phase 

is nonpolar. The low-temperature phase is polar and the Ti ion is off the cell center. 

The crystal changes its state by domain-wall migration. The loads 
needed to move the domain walls are much lower than the loads theoreti- 
cally predicted to uniformly switch the crystal. In fact, the latter has never 
been observed. Miller and Savage (1959) observed that the domain walls in 
BaTi03 move at a wide range of velocities (10~9-10-1 m/s). The new 
domains tend to start as spikes. In the following we review a model study 
of the growth of a small 180° domain, assuming that the growing domain is 
elliptic (Landauer, 1957; Loge and Suo, 1996). Rosakis and Jiang (1995) 
showed that sharp tips can emerge from the growing domain; their analysis 
will not be reviewed here. 

Figure 11 illustrates the cross section of a cylindrical domain in a large 
parent domain having the opposite polarization. Because both domains 
have the identical spontaneous strain, the elastic and the piezoelectric 
effects may be ignored compared to the dielectric effects. The problem is 
further simplified by assuming isotropic domain wall energy, permittivity, 
and mobility. To avoid solving an electrostatic problem for complex-shaped 
inclusions, we approximate the cross section of the domain by a sequence 
of ellipses, evolving the domain with two generalized coordinates, the 
semi-axes ax and a2. 
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FIG. 11. A 180° domain grows in a parent phase driven by an electric field. 

into the parent The free energy due to the introduction of the nucleus 
crystal is 

<K«„ a2) = ys - 2DsE^ata2 + Il^lBL 
e(at + a2)' (4.20) 

Here sis the perimeter of the ellipse, and e is the permittivity The first 

TzSfssrsr"- Th resists *■ ^ and *£^«2 me domain circular. The second term is the work term associated with 
polanzarion reversal, which drives the nnciens to grow and" nds to n^e 
fte nucleus crcular. The third term is the depolarization energy „duced 

Ä£trr d*e rnTous po,arization>wwch« - £ 
drec^eT '      eCÖOn' bM Wealdy resiS,S ^ Srowth i" *e a2 

The problem has a characteristic length /„ = -ve/n1 «,h,vh ..,„    n 

£r££r~of the e,Iip* ^2ÄÄ5 
.anon is et^/Ds - 0.05. The free-energy surface has a saddle 
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point at ax = 13/0 and a2 = 500/0, indicated by SP in Figure 12. The 
physical origin of this saddle point is evident. Along either the axis a1 = 0 
or a2 = 0, when the needle-shaped domain elongates, both the work term 
and the depolarization energy vanish, and the domain-wall energy in- 
creases the total free energy. Along a path with a large aspect ratio 
a2/ax, the total free energy is low for both a very small and a very large 
nucleus, and reaches a peak for an intermediate one. The fate of a nucleus 
depends on its initial position on the thermodynamic surface. To decrease 
the free energy, a very small nucleus shrinks, and a very large nucleus 
grows. For a nucleus near the saddle point, its fate is determined by both 
the energetics and the kinetics. In all cases, the free-energy landscape 
alone does not determine the evolution path. 

We next calculate the evolution path and rate. The differential equa- 
tions (2.13) become 

H,-,    H Ln 12 

H-TI    H- l21 22 

«i 

(Xi 

/l 

fl 
(4.21) 

£E/PS = 0.05 
L = £Y/Pa

2 

Normalized Semi-Axis, a-|/l0 

FIG. 12. Free energy contours for a 180° domain nucleus. 
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10000 

0   2000 4000 6000 8000 10000 12000 14000 

Dimensionless Time, t/(ye2/LDs
4) 

FIG. 13. The serai-axes of a 180° domain nucleus as functions of the time. 

The expressions for the generalized forces and viscosities are given in Loge 
and Suo (1996). Given initial semi-axes of a nucleus, we trace its evolution 
by^numencaly integrating (4.31). The problem has a characteristic time, 
t0 - l0/{Ly), which is used to normalize the time. Figure 13 shows the 
evolution of a nucleus of initial axes a2 = 500/0 and a, = 200/n The 
a2-axis increases almost linearly with the time after some initial adjust- 
ment. The araxis decreases first, and then increases slowly relative to the 
<*2-axes. The domain grows to a long needle in the direction of sponta- 
neous polarization, because of the large effect of the depolarization 
energy. 

E.   EXPLICIT FORMULA FOR THE DRIVING PRESSURE 

Eshelby (1956, 1970) called the following quantity the energy momen- 
turn tensor 

Pij = WStj - *ikekJ - EtDj. (4.22) 

An interface separates domain + and domain -, with the unit normal 
vector n pointing toward domain +. Denote the sum of the principal 
curvatures of the interface by K. Assume that no external force or charge 
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lie on the domain wall. Eshelby showed that, when the interface moves in 
the direction n by distance 8rn, the free energy of the crystal changes by 

8G = j[yK - nt{P^- P^Uj] 8rn dA. (4.23) 

The interface tension y is taken to be isotropic. A comparison of (4.23) 
with (2.2) gives the driving pressure on the interface 

& = -yK + /!,■(/£- P[j)nj. (4.24) 

If medium - is taken to be a traction-free but strained solid, and 
medium + the vacuum, (4.24) becomes 

&> = -yK-W. (4.25) 

Asaro and Tiller (1972) obtained this formula in analyzing surface motion. 
The equation of motion (2.3) becomes 

vn = -LiyK+W). (4.26) 

V.   Diffusion on Interface: Formulation 

This section formulates mass diffusion on an interface. The interface 
may be either a free surface, or a grain boundary. The diffusion species are 
taken to be electrically neutral, so that only mass conservation need be 
enforced. The free energy has the same contributions as before, e.g., 
surface tension, external work, and elastic energy. 

A.   GENERAL CONSIDERATIONS 

1.    Virtual Motion, Mass Conservation, and Interface Motion 

Figure 14 illustrates in three dimensions a surface that represents either 
a free surface or a grain boundary. Denote the unit vector normal to a 
surface element by n. An arbitrary contour lies on the surface, with the 
curve element dl, and the unit vector in the surface and normal to the 
curve element m. At a point on the contour, m and n are perpendicular to 
each other, and both are perpendicular to the tangent vector of the curve 
at the point. 
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FIG. 14. An interface in the third dimension. Also drawn is an arbitrary contour lying on 
the interface. :   & 

Let 51 be a vector field on the interface, such that 51 • m is the number 
of atoms crossing unit length of the curve. As before, 5 indicates a virtual 
motion, namely, the number of atoms is small and need not obey any 
kinetic law. Following Biot (1970), we refer to 51 as the virtual mass 
displacement, to distinguish it from the atomic flux used below. Let 5£ be 
the number of atoms added to the interface per unit area. Consider the 
interface area enclosed by the contour in Figure 14. Atoms move only on 
the interface, so that the number of atoms added to the area equals the 
number of atoms flowing in across the contour. Thus, 

f 8£dA +(ßdl-mdl = 0. (5.1) 

The first integral extends over the area of the interface enclosed by the 
contour, and the second over the contour. Equation (5.1) holds for 
any contour on the interface. Recall the surface divergence theroem, 
j> 51 • mdl = / V • (51) dA, where the operator V is carried on the surface' 
(Some writers signify the surface operator with V,.) Mass conservation 
requirements can also be expressed in terms of the surface divergence: 

5£+ V-(5I) = 0. (5.2) 

The atomic flux, J, is a vector field on the interface, such that J • m is 
the number of atoms across per length per time. Let £ be the number of 
atoms added to unit area of the interface in unit time. Mass conservation 
requires an expression similar to (5.1), 

JidA +<£j- mdl = 0, (5.3) 
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and an expression similar to (5.2), 

£ + V-J = 0. (5.4) 

We next connect £ to the motion of the free surface and the grain 
boundary. The expressions are similar between S£ and the virtual motion 
of the interfaces. On a free surface, atoms of the solid diffuse from one 
part of the surface to another. Atoms added to a surface element cause 
the element to move in the direction toward the vacuum at the velocity 
vn = Cl£. Here Ü is the volume per atom. 

A grain boundary is taken to be in local equilibrium. The atoms inserted 
to the grain boundary instantaneously crystallize, rendering the atomic 
structure of the grain boundary invariant. Yet the inserted atoms may add 
to either one of the two grains. Evidently, £ only determines the relative 
motion of one grain with respect to the other, but not the migration of the 
grain boundary itself. Denote the velocity of one grain relative to another 
by Aü„, being positive when the two grains recede from each other. The 
atoms added to a grain-boundary element cause the two grains to drift 
apart at velocity Aun = ft£. 

The migration of the grain boundary is a degree of freedom independent 
of the relative motion of the two grains, and should be treated by the 
interface migration kinetics in the previous sections. Relative sliding of the 
two grains are often taken to be fast; see Section VII.B. Cocks (1992) 
considered a locally nonequilibrium grain boundary, which will not be 
reviewed here. 

2.    Defining Diffusion Driving Force 

Associated with the virtual motion, 51 and 5£, the free energy of the 
system varies by 8G. Define the driving force for diffusion, F, as the 
reduction of the free energy associated with one atom moving unit dis- 
tance on the interface. That is, 

/' 
81 dA = -8G. (5.5) 

The integral extends over the interface. Equation (5.5) holds for arbitrary 
virtual motion. The force F is a vector on the interface, and has a unit of 
force/atom. 
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3.    Kinetic Law 

Following Herring (1951), we adopt a linear kinetic law: 

J = MF. (56) 

This equation defines the atomic mobility on the interface, M, which is a 
second-order tensor at any one point on the interface, and may also vary 
from point to point. In this article we will assume that the mobility is 
independent of the crystalline direction. The mobility is determined in 
practice either by observing a phenomenon such as surface grooving or by 
an atomistic simulation. S'       y 

A/^mTo^r" rKlateS * the SeIf"diffusivity by ^e Einstein relation, 
*T*      ?u f' D iS thC self-diffusivity on the interface,  S the 
effective thickness of atoms that participate in mass transport Ü the 
volume per atorn^ Boltzmann's constant, and T the absolute tempera- 
ture^ The self-diffusivity is approximately D = vb> exp(-q/kT\ where v 
is the frequency of atomic vibration, b the atomic spacing, and a the 
activation energy. & H 

Atomic mobility on an interface is sensitive to impurities. When the 
impurity atoms segregate to the interface, the interface has a much higher 
impurity concentration than the bulk crystal. For example, adding a few 
percents of copper to aluminum substantially slows down aluminum diffu- 
sion on gram boundaries (Ames et al, 1970). This empirical fact has been 
used   to   make   electromigration-resistant   interconnects   in   integrated 
circuits. 6*«i^u 

B.   DIFFERENTIAL EQUATIONS 

The considerations above specify the surface diffusion problem At a 
given time, the free-energy variation determines the driving force, the 
kinetic law relates the driving force to the flux, and the flux then updates 
the surface shape according to mass conservation. The procedure repeats 
for the next time increment. spears 

On?^ gene/aI/°nSitrati0nS l£ad t0 ^ Wioaches for computation. 
One approach due to Herring (1951), defines the chemical potential on 
the surface leading to partial differential equations. This subsection lists 
these equations. The following subsection formulates an alternative ap- 
proach on the basis of a weak statement. The two subsections can be read 
independently, m any order. 
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1.    Chemical Potential 

First consider an interface which is a closed surface in the third 
dimension. Herring (1951) defined the chemical potential of an interface 
element, p, as the increase of the free energy associated with the addition 
of one atom to the element. Thus, 

8G = f[Ji8£dA. (5.7) 

The integral extends over the surface. The chemical potential has a unit of 
energy/atom. 

Using (5.6) and the divergence theorem, one obtains that 

8G= -J fiV-(8l)dA 

= -J[V-(/t«D-(V/i)-5I]<L4 

= -<fifi8I-mdl + j(Vti)'8IdA (5.8) 

A closed interface does not have a boundary curve, so that the line integral 
vanishes. 

A comparison of (5.5) and (5.8) equates the two area integrals for 
arbitrary distribution of SI, so that the two integrands must be identical: 

F=-V/i. (5.9) 

The driving force is the negative gradient of the chemical potential. As 
expected, atoms diffuse from an interfacial element with high chemical 
potential to an interfacial element with low chemical potential. 

Next consider the continuity conditions at a triple junction. As discussed 
in Section II.F, the local equilibrium assumption requires that the free- 
energy variation associated with the translation of the junction vanish. 
Consequently, the three interfaces meet at angles determined by the 
surface tensions. These considerations apply here. In addition, the local 
equilibrium assumption requires that the chemical potentials on the three 
interfaces be equal at the triple junction. 

To see the last statement, consider three interfaces that meet at a 
straight line of length /. On the three interfaces 7l9 I2, and J3 are the 
components of the I vector pointing to the junction. The junction is 
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neither a mass sink nor a mass source, so that the net mass coming to the 
junction vanishes, 81, + 8I2 + 8I3 = 0. Recall that the chemical potential 
is the free-energy change associated with adding one atom. The free-en- 
ergy change due to the atoms moving to the triple junction is 8G = 
-l(fi, 81, + ß2 8I2 + ß3 8I3). A combination of the above two equations 
give 8G = -/(Ml - M3) 81, -l(fM2- M3) 8I2. The local equilibrium as- 
sumption requires that 8G = 0 for any virtual mass displacements 81, and 
8I2. Consequently, the chemical potential is continuous across the triple 
point, /Aj = fi2 = ^3. 

2.   Free Surface 

Mass conservation relates the velocity normal to the free surface to the 
flux divergence: 

v„ + nv • j = 0. (5.10) 

As stated in Section IV.E, associated with adding atoms on the interface, 
the free energy varies by 

8G = J(yK + W)ü 8£dA. (5.11) 

The surface tension y is isotropic, the sum of the two-principle curvature 
K is positive when the surface is convex, and W includes energy density 
due both to stress and electric field. A comparison between (5.7) and (5.11) 
gives the chemical potential on the surface, 

V = n(yK+W). (5.12) 
The diffusion driving force is 

F = - V(üyK + ÜW). (5.13) 

A combination of (5.6), (5.10), and (5.13) gives 

un = Mfl2V2(yK + W). (5.i4) 

This partial differential equation governs the motion of a free surface 
when the surface tension is isotropic. 

3.    Grain Boundary 

Mass conservation relates the relative velocity of the two grains to the 
flux divergence: 

Avn + (IV • J = 0. (5.15) 
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Let (Tn be the normal stress component on the grain boundary. To insert 
one atom to the grain boundary, the normal stress does work, varying the 
free energy by 

8G= -fanaS£dA. (5.16) 

Consequently, the chemical potential is 

ix = -Clan. (5.17) 

The driving force for diffusion on the grain boundary is 

F = nVo-„. (5.18) 

Atoms diffuse on the grain boundary from an element of low-normal stress 
to an element of high-normal stress. A combination of (5.6), (5.15), and 
(5.18) gives 

AvH = -Mn2Wn. (5.19) 

This partial differential equation governs the normal-stress distribution in 
the grain boundary. 

C.   WEAK STATEMENTS 

1.    Weak Statement When Interface Diffusion Is the Sole Rate Process 

Ignore Section V.B and start from Section V.A again. Consider a 
polycrystal particle with grain boundaries and free surfaces. We first 
assume that the grain boundaries do not migrate and grains are rigid, so 
that diffusion on interfaces is the only kinetic process. Replace the force in 
(5.5) with the flux using the kinetic law (5.6), giving 

[ ——dA = -8G. (5.20) 
J     M 

The integral extends over all the interfaces in the system. Different 
interfaces, of course, may have different mobilities. The actual flux / 
satisfies (5.20) for all virtual motions that conserve mass, dictated by 
(5.1)-(5.4) on each interface and by flux continuity at every triple junction. 

This formulation circumvents the differential equations in Section V.B, 
and the local quantities such as the chemical potential, the curvature of a 
free surface, and the normal stress in a grain boundary. The statement also 
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enforces local equilibrium at the triple junctions, namely, (a) the interfaces 
meet at a junction with angles determined by the surface tensions, and (b) 
the chemical potentials of all the interfaces are equal at the junction. 
Should for any reason the two types of junction mobilities be finite, 
one could add them to the weak statement in the manner described in 
Section II.F. 

2.    Variational Principle 

Needleman and Rice (1980) formulated a variational principle that 
includes grain-boundary diffusion, and devised a finite-element method on 
the basis of the variational principle. Extensions have been made to 
analyze several phenomena involving interface diffusion (e.g., Bower and 
Freund, 1993, 1995; Cocks, 1994; McMeeking and Kuhn, 1992; Sofronis 
and McMeeking, 1994; Suo and Wang, 1994; Svoboda and Riedel, 1995). 
Following the steps in Section HE, one can prove the following variational 
principle. Of all virtual flux J that conserves mass, the actual flux mini- 
mizes the functional 

U = G + i^MdA- (5-21> 
The weak statement and the variational principle lead to identical ordinary 
differential equations that evolve the generalized coordinates. 

3.    Galerkin Procedure 

Interface diffusion differs from interface migration in one significant 
way. For interface diffusion, mass conservation is expressed by partial 
differential equations, (5.2) and (5.4). When the shape of the surface is 
axisymmetric or invariant in one direction, the surface divergence involves 
one-dimensional differentiation, which can be integrated readily. The 
Galerkin method proceeds as follows. Model the surface with n degrees of 
freedom, writing qx,..., qn for the generalized coordinates, and qx,..., qn 

for the generalized velocities. Following the same procedure as in Section 
II.C to compute the generalized forces fit the virtual displacement of the 
interfaces 8rn, and the velocity of the interfaces un. Integrate (5.2) and 
(5.4), and one obtains 

8r=LQi8qit    J=LQlqi, 
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where Qt plays the similar role as the shape functions. The weak state- 
ment (5.20) then leads to the same equation as (2.13), with the viscosity 
matrix being 

11     J    M 

The shape of the surface is updated as before. We will demonstrate this 
method in later sections. 

4.   Include Mass Conservation in Weak Statement 

The procedure above, however, fails for a general surface in three 
dimensions, because the surface divergence in (5.2) now consists of differ- 
entiation of two surface coordinates. Consequently, one cannot integrate 
(5.2) to relate 51 to 8q2,...,8qn. What happens physically is clear. When 
the virtual motion of the surface is prescribed, mass conservation does not 
fully determine the virtual mass displacement. That is, a general surface 
requires degrees of freedom for 51, in addition to the degrees of 
freedom for the surface shape. The following notes may be useful in this 
connection. 

Mass conservation is a constraint, much like incompressibility in defor- 
mation analysis. One may use one of several methods in finite element 
methodology to include mass conservation in the weak statement. Here we 
use a penalty method as an illustration. Consider a closed surface for 
simplicity. Allow 5£ and 51 to vary independently, and associate a driving 
force A with the new degree of freedom 5£ + V • (51), writing 

JF* 8IdA + j A[8£ + V-(8I)]dA = -8G. (5.22) 

The integrals extend over the closed surface. Prescribe an independent 
kinetic law for this new degree of freedom: 

i+V-J = M0A. (5.23) 

The mobility M0 is an adjustable parameter in the finite element analysis; 
when MQ is very small, mass conservation (5.4) is recovered approximately. 
The weak statement becomes 

T    R T 1 
[-—dA+ [ — [|+V-j][5£+V-(5I)]^= -8G.   (5.24) 

J M J      Mr,   L J 
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Incidentally, one can confirm that the parameter A has a simple physical 
interpretation, A = -jx. 

D.   Multiple Kinetic Processes 

Consider a grain boundary which both migrates and acts as a diffusion 
path. Let 8rn be the virtual migration of the grain boundary, 51 be the 
virtual mass displacement on the grain boundary, and 8G be the free- 
energy variation associated with the combined virtual motion. Define 
the migration driving pressure & and the diffusion driving force F 
simultaneously by 

J&8rndA + JF- 8IdA = -8G. (5.25) 

The integrals extend over the grain-boundary area. Equation (5.25) holds 
for any mass-conserving virtual motion. Replacing the driving forces by the 
kinetic laws of the two processes, (2.3) and (5.6), we have 

f vn K rJ8I 
J ~JTdA + J ~WdA = ~8G- (5-26> 

The actual migration velocity un and flux / satisfy this weak statement for 
arbitrary mass-conserving virtual motion. 

Other kinetic processes can be similarly added to the weak statement. 
Take, for example, a system of interfaces that move by diffusion on the 
interfaces, and creep in the grains. The free energy consists of the external 
work and various interface tensions. The problem was first treated by 
Needleman and Rice (1980). Denote the virtual displacement field in the 
grams by 8uit and the actual velocity field in the grains by Vi. We will 
assume that the solid is incompressible, i.e., 

vu = °- (5.27) 

Define the stress tensor, aijy and the diffusion driving force Ft on the same 
basis, namely, as the energy-conjugates of their respective kinematic 
quantities. Thus, 

j cri} 8uljClA+ fFt 8ItdA= -8G. (5.28) 
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Interface diffusion obeys the kinetic law (5.6). For this demonstration, the 
grains deform according to a linear creep law: 

Vij = *m «// + V^j + vjti). (5.29) 

Here, am is the mean stress; 77 is the viscosity of the material; and 5,7 = 1 
when i = ;', 5i;- = 0 when i # j. 

Replacing the diffusion driving force with the flux by (5.6), and the stress 
with the velocity gradient by (5.29), we obtain 

flmjdUijdA + f^dA- -8G. (5.30) 

The actual velocity and flux satisfy this weak statement for arbitrary 
virtual motion. 

VI.   Shape Change due to Surface Diffusion under Surface Tension 

This section gives examples of shape changes motivated by surface 
tension. Most examples invoke surface diffusion as the only mass-transport 
mechanism. One example involves simultaneous grain-boundary migration 
and surface diffusion. 

A.   RAYLEIGH INSTABILITY 

Over a century ago, John William Strutt Rayleigh noted that a jet of 
water is unstable and breaks to droplets under the action of surface 
tension. Similar phenomena occur in a solid state; see Rodel and Glaeser 
(1990) for an experimental demonstration and literature survey. For exam- 
ple, at a high temperature, a crack-like pore in a solid undergoes a 
sequence of morphological changes until the crack breaks into many small 
cavities. The crack first blunts its edge, from which finger-like channels 
emerge, and the channels then break into small cavities. The morphologi- 
cal changes shorten the distance over which mass transports, and therefore 
accelerate the crack healing. 

Assume that the surface tension is isotropic, and the free energy of the 
system is the surface area times the surface tension. Of all figures of 
the same volume, the sphere has the lowest surface area, and therefore the 
lowest free energy. Why, then, does a cylinder evolve into many small 
spheres, rather than one, single large sphere? 
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Consider a long cylinder of radius R. Perturb the surface along the 
ongitudmal direction of the cylinder. It can be shown that the perturba- 

tion reduces the surface area if its wavelength exceeds 2TTR  Further 
Srolovitz and Safran (1986) compared a row of identical spheres with the 
long cylinder having the same total volume, and noted that the spheres 

IZL^RnT1 Tace Tthan the <*Hnder if the sphere radius 
exceeds 3R/2. This sphere radius corresponds to an initial perturbation 
wavelength of 9R/2. From these geometric (energetic) considerations, one 
expects that a sequence of configurations exists, from a cylinder to a row of 
spheres of large enough radii, with decreasing surface areas 

But these energetic considerations do not answer the question raised 
above. The answer has to do with kinetics. It takes a short time for a 
cylinder to evolve into a row of spheres. The spheres break the mass- 
transport path, preventing the system from reaching the minimal energy 
configuration, a single, large sphere. Here we have assumed a certain kind 
of mass-transport mechanism, such as fluid flow or solid diffusion If 
instead, the cylinder is sealed in a small bag, it will evolve to a single large 
sphere via vapor transport. ' 

Nichols and Mullins (1965a, b) carried out a linear stability analysis of a 
cylinder using several mass-transport mechanisms. For surface diffusion 
they showed that a perturbation of wavelength, Am = 2G*R, amplifies' 
most rapidly. If the initial imperfections of all wavelengths have a similar 
amplitude, it is reasonable to expect that the finite sphere size corresponds 
to wavelength \m. 

H 

In what follows, the Rayleigh instability is used to illustrate the applica- 
tion of the weak statement. Surface-tension anisotropy is also included in 
the end of the analysis. 

1.    Free Energy 

Figure 15 illustrates a long cylinder of initial radius R with Isotropie 
surface tension y. Perturb the cylinder to a wavy surface of revolution 

r(z,t) =R t   \ ,   >. 277-Z 
pU) + e(t)cos  (6.1) 

where r is the radius of the perturbed surface, z the axis of revolution 

i lhZe'uVhe aV6rage radiUS' eR the amPl*ude, and A the wave- 
length. If the family of the assumed virtual motion contains the exact 
solution, the Galerkin procedure leads to the exact solution; otherwise the 
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>- z 

FIG. 15. Perturb a cylindrical surface to a surface of revolution with an undulation along 
the axial direction. 

Galerkin procedure leads to an approximate solution. In this case, the 
family (6.1) happens to contain the exact solution of Nichols and Mullins 
(1965a, b). 

Mass conservation requires that the volume be constant. Thus, 

fA irr2 dz = TTR\ (6.2) 

which, to the leading term in s, gives p = 1 - e2/4. Thus, the surface 
profile is 

s2 2TTZ 
r = R 1 h s cos  

4 A 
(6.3) 

The wavelength A is fixed in the linear stability analysis, so that this model 
has only one generalized coordinate: the perturbation amplitude e. 

The free energy of the column is the surface tension integrated over the 
column surface. In one wavelength the free energy is 

r\ r ol1/2 
G = f 27rry[l + (dr/dz)\      dz, (6.4) 

and to the leading term in s, 

77 
G = 2irR\y+ — R\y 

2TTR 

- 
- 1 (6.5) 

If the quantity in the bracket is negative, the free energy decreases as s 
increases. Consequently, the amplitude of a perturbation grows if its 
wavelength exceeds a critical value 

Ac = ITTR. (6.6) 

This reproduces the condition established by Rayleigh. 
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2.   Kinetics 

Because of symmetry, J = 0 at z = 0. Mass conservation relates the flux 
J(z) to the rate of the change of the volume between 0 and z. Thus, 

d     rz 
lirrVl] = /   77-r2 dz. 

dt J0 

To the first order in the perturbation, the above is 

R\       (2TTZ\ 
J= ~^—7Z sin   \e. 

27TÜ        \     A    / 

The weak statement (5.20) becomes 

(6.7) 

(6.8) 

e 
(6.9) 

with the characteristic time r being 

R4 

\Ct2M 
1 - m ( 2l_1'27ri? -2 

(6.10) 

For the initial condition e = ^(0) at t = 0, the solution to (6.9) is 

s(O = £(0)expl-j. (6.11) 

Figure 16 shows the trend of the characteristic time (6.10). When A < 2TTR, 

the perturbation increases the free energy, r < 0, and the perturbation 

FIG. 16. The characteristic time as a function of the wavelength. 
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diminishes with the time. When A > 2TTR, the perturbation decreases the 
free energy, r > 0, and the perturbation amplifies with the time; r mini- 
mizes at Am = IJITTR, agreeing with the analysis of Nichols and Mullins 
(1965a, b). 

The conclusion above is made on the basis of the linear stability 
analysis, where high-order terms of s have been ignored. A complete 
simulation of the surface evolution is necessary to take into account the 
actual initial imperfection and large shape change (Nichols, 1976). 

3.    Surface- Tension Anisotropy 

Imagine a crystal having transversely isotropic surface tension. The long 
cylinder of circular cross section has constant surface tension y0. When 
the cylinder becomes a surface of revolution, the surface tension is 
nonuniform along the longitudinal direction. Denote 6 as the angle of the 
normal vector of an arbitary crystal plane, measured from the normal 
vector of the perfect cylinder. For small 6, the surface energy y can be 
expanded in the powers of 0, assuming y is a smooth function of 0. The 
crystal is assumed to have such a symmetry that the crystal plane at 0 and 
the crystal plane at — 0 have the identical surface energy. Consequently, 
the expansion only contains the even powers of 0. Take only the first 
two terms: 

y(B) = y0(l - ad2). (6.12) 

Here the dimensionless number a indicates the anisotropy. When a > 0, 
the crystal plane of the perfect cylinder has the largest surface tension of 
all the neighboring crystal planes. 

Perturb the cylinder to a surface of revolution with profile (6.3). To the 
first order of s, 

dr       2TTR I 2-rrz \ 
d== = —— *sin —-  ■ (6-13) 

dz A \   A   / 

The free energy (6.4), to the leading order in s, is 

G = 2TTR\y0+ y#Ay0 (l-2a)| — I   -1 
(ItrRY 

s2. (6.14) 
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The cylinder is unstable when the perturbation wavelength exceeds 
critical value Ac, given by 

(6.15) 

If the surface tension is very anisotropic, i.e., a > 1/2, the cylinder is 
unstable for perturbations of any wavelength. 

B.   A Row OF GRAINS—A MODEL WITH TWO DEGREES 

OF FREEDOM 

An important distinction exists between a system of one degree of 
freedom and a system of multiple degrees of freedom. For a system of one 
degree of freedom (e.g., the spherical particle studied in Section III.A), the 
free energy is a function of the generalized coordinate (i.e., the particle 
radius), represented by a curve in a plane with the free energy as the 
vertical axis and the generalized coordinate as the horizontal axis. A point 
on the curve represents a nonequilibrium state; a minimum point on the 
curve represents an equilibrium state. Energetics requires that the state 
descend on the curve. Consequently, energetics alone determines the final 
state. Kinetics is restricted to the role of determining the time needed to 
approach the equilibrium state. 

For a system of two degrees of freedom, the free energy is a function 
of two generalized coordinates. This function is a surface in a three- 
dimensional space, with the free energy as the vertical axis, and the two 
generalized coordinates as horizontal axes. A point on the surface repre- 
sents a nonequilibrium state in general; the bottom of a valley represents 
an equilibrium state. Energetics requires that an evolution path be a 
descending curve on the surface. There are, however, countless descending 
curves on a surface from any point other than a bottom of a valley 
Consequently, when a system has two or more degrees of freedom 
energetics by itself does not determine the evolution path. Kinetics plays a 
more significant role than just timekeeping. 

In the analysis above of the Rayleigh instability, the system is modeled 
with only one degree of freedom, the amplitude of the perturbation, e. It 
gives the sensible predictions when the perturbation amplitude is small 
but cannot predict the spacing of the final spheres. In fact, the system has 
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infinitely many final equilibrium configurations, and simply cannot be 
modeled with one degree of freedom. 

We next illustrate these general points in some detail with a row of 
grains (Sun et al., 1996). Similar problems arise in an electrical intercon- 
nect (Srolovitz and Thompson, 1986), powder sintering (Cannon and Carter, 
1989), and a fiber constrained on a substrate (Miller and Lange, 1989). 
Figure 17(a) illustrates a fiber of bamboo-like grain structure. The fiber 
consists of a row of identical grains, initially cylindrical in shape and 
connected at their ends, each grain being of length L0 and diameter D0. 
The grains change shape by mass diffusion on the surfaces and grain 
boundaries, under the action of surface and grain-boundary tensions, ys 

and yb. The fiber is unconstrained in the longitudinal direction. The grains 
are assumed to remain identical to one another (Figure 17(b)). They will 
evolve to either one of two equilibrium configurations: the isolated spheres 
(Figure 17(c)), or connected disks of truncated spheres (Figure 17(d)). 

a) 

Lo 
■<———»> 

D4 

b) 

Ye 

c) Isolated Spheres d) Truncated Spheres 
FIG. 17. (a) The initial cylinder-shaped grains, (b) Barrel-shaped grains approximate an 

intermediate, nonequilibrium state, (c) Grains pinch off and spheroidize, approaching an 
equilibrium state, a row of isolated spheres, (d) The array contracts as atoms diffuse out from 
the grain-boundaries and plate onto the free surfaces, approaching another equilibrium state, 
a touching array of truncated spheres. 
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The final equilibrium state is selected by an interplay between the free 
energy and the kinetic process. For most materials, yb < 2y , and the 
isolated spheres in Figure 17(c) have higher free energy than the truncated 
spheres in Figure 17(d). For the fiber to groove along the triple junction, 
pinch off, and spheroidize, atoms need only diffuse on the surfaces of the 
grains. For the fiber to become truncated spheres, atoms must diffuse out 
of the grain boundaries to allow the grain length to shrink. If the atomic 
mobility on the grain boundary is much lower than that on the surface, 
Mb<zMs, which is true for many materials, the grains do not have the 
time to shorten significantly before they pinch off. 

1.   Energy Landscape 

Approximate the shape of a nonequilibrium grain by a barrel formed by 
rotating a circular arc about a prescribed axis. The geometry is fully 
specified by three lengths: the arc radius R, the grain length L, and the 
gram-boundary diameter D. The volume of each grain is constant during 
evolution, which places a constraint. Consequently, within the approxima- 
tion, the structure has only two degrees of freedom, which we chose to be 
the grain length L, and the dihedral angle, *. Note that this approxima- 
tion violates local equilibrium assumption at the triple junction. 

Denote the area of the surface of a grain by As, and the area of a grain 
boundary by Ab. Consequently, the free energy per grain is 

G = ysAs + ybAb. (6>16) 

When the triple junction reaches equilibrium, the dihedral angle V 
reaches % determined by (2.21). We will use % to indicate the ratio 
%/%. The free-energy function, G(L,V\ is computed in Miller and 
Lange (1989) and Sun et al. (1996). 

Figure 18 shows the energy landscape for L0/D0 = 2.5 and % = 150°. 
The upper-left corner terminates when the grains pinch off. Indicated on 
the landscape are the three special states: the initial cylinders, the isolated 
spheres, and the truncated spheres. From the initial state of the cylinders 
the landscape descends steeply towards the minimum energy state of the 
truncated spheres. The landscape, however, does contain descending paths 
from the state of cylinders to the state of isolated spheres. Energy 
landscape, by itself, does not determine the evolution path. 
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^/Dn=2.5     \|/,=150° 

FIG. 18. Energy landscape: the free energy is a function of the generalized coordinates, 
the grain length and (nonequilibrium) dihedral angle. Three special states are indicated: the 
initial cylinders, the isolated spheres, and the truncated spheres. 

2.   Evolution Path 

Denote the mobility on the grain boundary by Mb, and the mobility on 
the surface by Ms. The weak statement of the problem is 

fw8I^ + fwh
8IbdAb = -8G- (6.17) 

The two integrals are over the surface and the grain boundary, respec- 
tively. Mass conservation relates the fluxes to the generalized velocities L 
and "fc. The Galerkin procedure leads to two ordinary differential equa- 
tions that evolve the generalized coordinates, L and ¥ (Sun et al., 1996). 

The numerical solutions are plotted in Figure 19. The solid lines are the 
energy contours. After the grains pinch off, they spheroidize with only one 
degree of freedom, V, as represented by the dashed line at the upper-left 
corner. The dotted lines are the evolution paths for various mobility ratios, 
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Dihedral Angle Hf 

FIG. 19. The solid lines are the energy contours. The dotted lines are the evolution 
path when the grains are connected. The dashed line is the evolution path after the grains 
pinch off. 

Mb/Ms. When the grain-boundary mobility is vanishingly small, Mb/Ms = 
0, the grain length remains constant while the surface grooves; the grains 
pinch off and spheroidize, approaching a row of isolated spheres. Increas- 
ing the mobility ratio to Mb/Ms = 10~3 allows the grains to contract to 
the state of truncated spheres. Consequently, everything else being fixed, a 
critical grain-boundary mobility exists, above which the grains contract to 
the lowest energy state, the truncated spheres. The evolution path depends 
on both energetics and kinetics. 

Figure 20 draws a morphological diversity map. A point on the map 
represents a pair of parameters, L0/DQ and Mb/Ms. A boundary divides 
the plane into two regions. A parameter pair in one region makes the 
grains evolve to isolated spheres, and a parameter pair in the other region 
makes the grains evolve to truncated spheres. 

240 



Motions of Microscopic Surfaces in Materials 255 

o 
Q 

4- 

EC     3 
■5 a» 
a. 
CO 

< 
c      2 
2 
O 

CO 
2      1 
c 

10"! 

Morphological Diversity 

i       i     I   i  i i i i I   i   i III 11 

ooo 

COD 

10- 10"5 

Mobility Ratio Mö/Ms 

i  i i 1111 

% = 150° 

10* 

FIG. 20. A diversity map. The coordinates are the control parameters that do not change 
when the structure evolves. A boundary separates the plane into two regions. A fiber with the 
parameter group falling above the boundary evolves to isolated spheres. A fiber with the 
parameter group falling below the boundary evolves to truncated spheres. 

C. GROOVING AND PITTING 

Figure 21(a), page 256, illustrates a triple junction formed by a grain 
boundary and the free surface. The free surface is initially flat. When 
heated, atoms diffuse on the surface, leaving an indent along the triple 
junction, and two bumps over the grains. The size of the groove increases 
with the time. The forces that cause grooving are the surface and grain- 
boundary tensions. When the groove grows, the surface area increases 
somewhat, but the grain-boundary area decreases, so that the total free 
energy of the system reduces. Mullins (1957) analyzed this phenomenon, 
assuming that the surface and grain-boundary tensions, ys and yb, are 
isotropic, the grain boundary remains stationary, and no mass flows out 
from, or into, the grain boundary. 

The equation for surface motion (5.14) becomes 

vK = BV2K;    B = Mü\ (6.18) 
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(b) 

FIG. 21. (a) A surface groove over a grain boundary, (b) A surface pit over a three-grain 
junction. °^ 

Because the initial geometry has no length scale, the surface evolves with a 
self-similar profile: all lengths in the subsequent geometry scale with the 
time as (Bt)V\ For example, the groove depth (i.e., the distance from the 
groove root to the plane of the initial flat surface) scales as 

d = k{Bt^\ (6>19) 

The dimensionless coefficient k depends on the ratio yb/7s only. Mullins 
further simplified the problem by noting that the slope of the profile is 
typically small and the equation can be linearized. Under this simplifica- 
tion, k must be linear in the slope of the surface at the triple junction 
m, defined by (3.13). Mullins' analysis gave k = 0.78m. The spacing 
between the peaks of the two bumps, w, has the same time scaling but 
is independent of m under the small slope simplification. Mullins's 
analysis gave 

w = 4.6(Bt)i/4. (6.20) 
The groove width and depth may be measured experimentally. One can 
therefore deduce the surface tension and the surface diffusivity if yb has 
been determined by some other experiments. See Tsoga and Nikolopoulos 
(1994) for an experimental demonstration. 
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Figure 21(b) illustrates an intersection between the free surface and a 
three-grain junction. The surface grooves along the grain boundaries, and 
pits at the point of emergence of the three-grain junction. The surface 
profile is still self-similar, all lengths following the same time scaling as 
above. The pit depth obeys (6.19), the coefficient k depending on the 
ratios of various surface tensions involved. Genin et al. (1992) analyzed the 
problem, and found that k is greater than 0.78m, but within a factor of 3 
for all the configurations considered by them. 

Grain-boundary grooving and pitting may break a polycrysalline thin 
film on a substrate. If the grain size is much larger than the film thickness, 
(6.19) estimates the time needed for a three-grain junction to pit through 
the film thickness. However, if the grain size is comparable to the film 
thickness, mass transported from the grooves piles up on the grains, 
stopping the grooving process. Srolovitz and Safran (1986) and Miller et al. 
(1990) demonstrated that a critical ratio of grain size and film thickness 
exists, below which the grains reach an equilibrium configuration without 
breaking the film. Such an equilibrium state, however, may be unstable 
against grain growth. The coupled process of grain growth and surface 
grooving-pitting has not been analyzed. 

- D.   GRAIN-BOUNDARY MIGRATION IN THIN FILM; EFFECT OF 

SURFACE DIFFUSION 

Mullins (1958) investigated the effect of surface diffusion on the migra- 
tion of a grain boundary. Figure 22 illustrates a triple junction of a grain 
boundary and two free surfaces. Two rate processes are involved: migra- 
tion of the grain boundary and diffusion on the free surfaces. Dragged by 
the grain boundary, the groove moves to the right. Mullins solved the 
problem of the groove moving in a steady state, with constant velocity v 

FIG. 22. A grain boundary moving in a thin film. Surface diffusion causes grooving at the 
triple junction. 
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and depth d. The significant features of his solution may be summarized 
as follows. 

The steady velocity v and the material constant  B in (6.18) define 
a length: 

/ = (B/u)1'3. (6.21) 

This length sets the scale of the steady-state profile of the free surfaces. In 
particular, the groove depth, d, is linear in /. The shape of the translating 
groove depends on the ratio of the mobilities of the two surfaces, and the 
ratios of various surface tensions. Mullins assumed that the two surfaces 
have the identical mobility and surface tension. Consequently, only the 
ratio of the grain boundary and surface, yb/%, enters the problem. Under 
the assumption that the surface slope is small, Mullins found that the 
steady-state groove depth is 

yb ( B \1/3 

d=Hb) ■ (6-22) 

Everything else being equal, the larger the velocity, the smaller the 
groove depth. 

Like surface evaporation, surface diffusion rotates the surfaces at the 
triple junction. The rotation angle 6 in Figure 22 only depends on yb/y5. 
Mullins' solution gives 

e=lT- (6.23) 

The rotation angle is independent of the steady velocity. 
In his original analysis, Mullins (1958) did not specify the force that 

drives the grain-boundary migration, leaving the steady velocity undeter- 
mined. Following the works cited in Section III.E, we consider a grain 
boundary migrating in a thin film, driven by the difference in the interface 
tensions, y+ and y" (Figure 22). The slope <f> is determined by the 
equilibrium of the triple junction in the horizontal direction (3.25). For the 
grain boundary to move to the right, it must concave toward the right, 
<f>> 0, namely, 

yt~ J7      yb , 
—  >T-. (6.24) 

Jb 6y 

244 



Motions of Microscopic Surfaces in Materials 259 

The effect of surface diffusion on grain-boundary migration is similar to 
surface evaporation discussed in Section III.E. 

When <f>> 6, from (3.20), the velocity of the grain boundary is given by 

v =Lbyb 

(</>- e) 
(h -d) 

(6.25) 

Simultaneously solving (6.22) and (6.25) gives u and d. The nonlinear 
equations have a unique real-valued solution. The solution depends on 
<f>, 6, and the dimensionless ratio 

fl2M5 

h2U 
(6.26) 

involving the surface diffusion mobility Ms, the grain-boundary migration 
mobility Lb, the film thickness h, and the atomic volume fl. Everything 
else being fixed, d/h increases with the parameter (6.26). Consequently, a 
thin film is more likely to break than a thick film. 

E.   STEADY SURFACE MOTION 

1.    Surface Invariant in One Direction 

The profile of such a surface is described by the curve in a cross section. 
Assume, as a boundary condition or a symmetry condition, that the flux at 
a point on the surface vanishes. Let the origin of the coordinate (x, v) 
coincide with this point, Figure 23. Focus on a segment of the curve 

J(0) = 0 

FIG. 23. Geometry of a steady-state surface profile. 
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between the origin and the point at v. Mass conservation relates the flux 
out of the segment, J(y), to the steady velocity v: 

uy 
/=n- (6-27) 

Assume isotropic surface tension y and diffusion mobility M. The curva- 
ture K is positive for a convex surface. The flux relates to the curvature 
gradient along the surface: 

MySldK 
j= . (628) 

as 

A combination of the two equations above gives that 

dK v 

A-"/*- (6-29) 

The length / is defined by (6.21). Recall geometric relations, 

dd dy dx 
— = -K, — = sin 6, — = cos 6. (6.30) 
ds ds ds 

Equations (6.29) and (6.30) give the complete set of ordinary differential 
equations. Note that only the last two equations are nonlinear, which may 
be linearized when the slope is small, as Mullins (1958) did. The equation 
set can be integrated with suitable boundary conditions. For a closed 
curve, the size of the problem is set by giving the area enclosed by the 
curve. 

Chuang and Rice (1973) showed that a slit-like cavity may extend on a 
grain boundary if mass diffuses rapidly into the boundary ahead of the tip. 
Thouless (1993) and Klinger et al. (1995) studied slit formation on parallel 
grain boundaries. The co-evolution of pores and grains during sintering 
sets the microstructure of a final product. Spears and Evans (1982) 
examined the steady motion of a pore on a three-grain junction, and its 
relation with coarsening of pores and grains. The stability of the steady- 
state solutions has not been studied in general, but the available transient 
solutions show the validity of some steady-state solutions. Pharr and Nix 
(1979) and Thouless (1993) demonstrated that, under certain conditions, a 
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rounded void on a grain boundary stressed in tension evolves to the 
steady-state slit solution of Chuang and Rice (1973). 

2.    Surface of Revolution 

Now Figure 23 represents a surface of revolution around the x-axis. 
Assume that the flux at the apex vanishes, / = 0 at v = 0. Mass conserva- 
tion relates the flux /(v) to the steady velocity v: 

uy 

The flux relates to the curvature gradient still by (6.28). For the surface of 
revolution, the sum of the principal curvatures is 

d6      cos 0 
K= -— +  . (6.32) 

as v 

The set of ordinary equations are 

dK v        dB cos0      dy dx 
~d7 = -W    -ds- = -K+-y->    ^ = sin ö,-= cosö.  (6.33) 

They may be solved under analogous conditions as above. 
Hsueh et al. (1982) examined the steady motion of a pore attached on a 

grain boundary, and the conditions under which the pore detaches from 
the grain boundary. 

VII.    Diffusion on an Interface between Two Materials 

An interface between two materials is a rapid diffusion path for impurity 
atoms and atoms of the two materials. This section concerns with the 
latter. Both materials are taken to be rigid. (Sofronis and McMeeking, 
1994 considered the combined interface diffusion and matrix creep in 
composite materials, which will not be considered here.) On an A1-A1203 

interface, for example, one expects that aluminum diffuses much faster 
than oxygen, the latter being tied by the stronger atomic bonds. The 
situation is unclear on an Al-Al2Cu interface: either aluminum or copper 
may be the dominant diffusion species on the interface. If aluminum 
diffusion dominates, the situation is similar to the aluminum-alumina 
interface. If copper diffusion dominates, in order for one copper atom to 
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leave an interface element, one Al2Cu unit dissolves and donates two 
aluminum atoms to the aluminum crystal. Similarly, for one copper atom 
to add to an interface element, one Al2Cu unit forms and accepts two 
aluminum atoms from the aluminum crystal. See Ma and Suo (1993) for a 
discussion on such an interface. This section focuses on the situation 
exemplified by the aluminum-alumina interface, where no mass exchanges 
across the interface. 

A.   RIGID INCLUSION MOVING IN A MATRIX 

Refer to the material that diffuses on the interface as matrix, and the 
material that does not diffuse as inclusion. Subject to a force, atoms of the 
matrix diffuse from one part of the interface to another. To accommodate 
the space, the inclusion moves like a rigid body—translating and rotating 
—relative to the matrix. The shape of the interface remains invariant. The 
mobility of the atoms on the interface determines both the translation and 
rotation velocities, which may change with time. This situation arises in 
several important phenomena in materials. For example, when an inclu- 
sion attaches to a grain boundary, the speed of the combined entity 
depends on the mobilities of both the inclusion and the grain boundary. 
Consequently, the inclusion may retard the grain-boundary migration. 

As a demonstration, we will only consider inclusion translation. Let v be 
the translation velocity of the inclusion relative to the matrix, J the flux of 
the matrix atoms, Ü the volume per matrix atom, and n the unit vector 
normal to the interface pointing to the matrix. Assume that neither the 
inclusion nor the matrix deforms, so that the volume added to an interface 
element must be accommodated by the inclusion motion: 

nv = fWj. (7.1) 

Similarly, let Sr be the virtual translation of the inclusion, and 51 the 
virtual mass displacement. Mass conservation requires that 

n-5r = nV-(5I). (7.2) 

The driving force for the inclusion translation, f, is the free-energy 
reduction associated with the inclusion translating unit distance, namely, 

5G=-f-8r. (7.3) 
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This force can be calculated once the free energy is known as a function of 
the inclusion position. Equation (5.5) defines the diffusion driving force, 
and (5.6) prescribes the kinetic law. The weak statement (5.20) still applies. 

Analytical solution can be readily found for an inclusion having a shape 
invariant in one direction subject to a force perpendicular to that direc- 
tion, or for an axisymmetric inclusion subject to a force in the direction of 
the symmetry axis. 

1.   Axisymmetric Inclusion 

With reference to Figure 23, the interface is a surface of revolution. The 
force /, defined by (7.3), is in the direction of the axis of revolution, the 
x-axis; y is the radius of the surface of revolution. The inclusion translates 
at velocity v in the x-direction. Mass conservation relates the flux / 
to the velocity u, and the virtual mass displacement 81 to the virtual 
translation 8r: 

J=lä"' SI=JnSr- a4) 

The weak statement (5.20) becomes 

f(JL)2 — 
J\2aJ    M 

giving 

dA=f8r, 

4Ma2f 
V=~JyrdÄ' 

(7.5) 

The integral extends over the area of the interface. For a spherical 
inclusion of radius R, jy2 dA = 8irR4/3, so that 

v-3-^.. (7.6) 
2TTR

4 

The approximate solution given by Shewmon (1964) has the same form as 
(7.6), but a different coefficient. 

2.    Two-Dimensional Problem 

Figure 23 now represents an inclusion having a shape invariant along 
the axis normal to the plane of the paper, subject to a force in the x-axis. 
Energy is on a per thickness basis, so that / is the force on a per unit 
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thickness of the inclusion. We will assume tw ^     ^- , 
the ,-axis; the method, ho^Tis^Z^r Tt T*"~ " 
interface at v = 0 and / th, A       ,general- Let Jo be the flux on the 

Mass conse^ion'^uires *af * "' P™ > °" "" interfa- 

■f-/.+ 5D,  a/-«0+£jr. (7y) 

The weak statement (5.20) becomes 

SJääT *ern::n r °rf
f ^interface- *— 

above to two equations °'       mdePendei*«* equation splits 

nj<,fds + vfyds = 0. (78) 

ny» />* + o /r2* = fi2Af/. (7 Q) 

They solve /0 and v. 

_ Affi2/ 

" ~ M&' (7.10) 

For example, a cylindrical inclusion of radius * translates at velocity 

Äfft2/ 
u = 

TTR
3
   ■ (7.11) 

B.    DlFPUSION-COKTROLLED INTCRFACIAL SUDINO 

oth^tlXetrr tar
h

stress may siide «■-** *> -h 
interface. H' tteimerface dt,^* f * ' V'SC°US Shear Pr0cess °n th* 
ahme does not 'JSÄSTndm] EPSon 2 t"^ 
be acconunodated by plastic now JE^FZ^S^ 
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proposed an alternative process, which operates at low stresses and high 
temperatures, when the bulk of the materials is rigid. Figure 24 illustrates 
two materials bonded by an interface with steps. Under the applied shear 
stress, T, the interface is under tension at locations like A, and compres- 
sion at locations like B. The gradient of the normal stress causes atoms of 
at least one material to diffuse on the interface, and thereby accommo- 
dates sliding. In this picture, sliding consists of two rate processes: viscous 
shear and interfacial diffusion. The two processes are in series; the slower 
one limits the sliding rate. Raj and Ashby gave experimental evidence 
indicating that it is often mass diffusion, rather than viscous shear, that 
limits the sliding rate. Similar considerations suggest that inclusion parti- 
cles on a grain boundary may retard grain-boundary sliding (Raj and 
Ashby, 1972). 

Following Raj and Ashby (1971), we consider an interface with periodic 
steps (Figure 24). The ratio of the step height to the period, A/A, is 
typically small and is exaggerated in the figure. Due to symmetry, the flux 
vanishes at the middle of the step height, where the origin of the y-axis is 
placed. We next apply (7.10) to one period of the bi-material. The force on 
one period is 

/= rA. 

The integral over the interface within one period is 

1 1 
fy2ds= -\h2+ -h\ 

J 4 6 
(7.12) 

T,V 

|-^X *^ 

FIG. 24. A bi-material interface with periodic steps. The rate of sliding is limited by 
diffusion on the interface to accommodate the asperity. 
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Consequently, the two materials slide at a relative velocity 

4MÜ
2

T 
v 4 + ^ 

3A 

(7.13) 

This reproduces the approximate result of Raj and Ashby (1971) in the 
limit h/k -> 0. 

C.   GRAIN-BOUNDARY MIGRATION IN THIN FILM; EFFECT 

OF INCLUSION 

Figure 25 illustrates a grain boundary migrating in a thin film of 
thickness h, motivated by the difference in the film-substrate interface 
tensions of the two grains, y:

+ and yf . The grain boundary also drags a 
semi-circular inclusion of radius R on the film surface. The surface 
tensions of the two grains at the free surfaces, ys, are taken to be the 
same. The inclusion retards the grain-boundary motion if the inclusion 
itself has low mobility. We will only consider a two-dimensional problem 
where the inclusion is a cylinder. The film-substrate interface is taken to 
be immobile, so that the angle at the triple junction, <f>, is given by (3.25). 

The grain-boundary migration can be modeled by the steady-state solu- 
tion in Section IILD. The grain boundary moves at a velocity 

v = 
Lyb(<f>- B) 

h-R (7.14) 

H-2R-H 

//////////// /////// 

FIG. 25. A grain boundary in a thin film, pinned by an inclusion. 
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The grain-boundary tension exerts a force on the inclusion, / = yb sin 0. 
Equation (7.11) gives the velocity of the inclusion 

2MÜ2 yb sin 0 
u =  ± . (7.15) 

TTR
3 

The angle 0 falls between 0 and <j>, and is determined by equating the 
velocities above. Consequently, the angle 0 is solved from 

sin0 /       R \        TTLR
3 

1 - — cos 0   = ——=-. (7.16) 
(f>- SV      Ä wu"/      2Mtt2h 

The inclusion retards the grain-boundary migration substantially if 
0 -» <f>, or 

LR3 

Mtfh 
» 1. (7.17) 

This condition involves the film thickness and particle radius, the migra- 
tion mobility of the grain-boundary L, and the diffusion mobility of the 
inclusion-film interface M. 

Y1H.   Surface Diffusion Driven by Surface- and 
Elastic-Energy Variation 

A small crystal can sustain a high stress without fracture or plastic 
deformation. At an elevated temperature, the elastic energy can motivate 
mass diffusion. For example, when a film is deposited on a substrate with 
similar crystal structure having a few percent difference in lattice constant, 
the film strains to match the substrate lattice constant. The stress in the 
film would exceed 1 GPa were all relaxation processes suppressed. When 
the film is thick, the stress is relieved by dislocations or cracks. When the 
film is thin and the temperature is high, the stress is relieved by mass 
diffusion, breaking the film into islands. See Leonard et al. (1994) for a 
demonstration with InAs on GaAs. 

Surface diffusion driven by strain-energy variation is difficult to analyze. 
The stress field has to be solved as a boundary-value problem for every 
surface shape during evolution, which is analytically intractable for most 
technically interesting problems. The high-order differential equation (5.14) 
requires great care in the numerical analysis. In many situations, the stress 
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DueTcZlZ   , y m'Sfi  disloca,ions.- ""ear elasticity is inadequate. 
Due to these difficulties, ouly a few idealized problems have been solved 

This secuon d>scusses two such problems to give an impression of this 

clni^rr/rEach probi?deais with - ^ A *o> constant load. The free energy of the crystal, G, has three contributions- 
file surface energy Us, the elastic energy UE, and the applied load times 
the^placement, i.e., G = Us + UE - load X displacement. Linear eTas 
..city dictates that 2VE = load X displacement.  Consequently   th    free 
energy of an elastic solid under constant load is 

G = US-U. *• (8.1) 

A.   INSTABILITY OF A FLAT SURFACE 

of ftTcr^aHs Va?
8e ST °f "^ Under n° eXtemal S,ress- A »"*« 

surfaceZfa   th     ^ ,SOtr0piC SUrfaCe tension- If scratt^d, the surface heals as the surface tension motivates mass to flow to restore the 
muumum energy configuration, the flat surface. Muffin, (195^, anlfJed 

S"SsgioPnroCeSS Vk SeVeraI m~P°rt ——• **& 
Next, subject the crystal to a uniaxial stress parallel to the flat surface 

ic2tad!e" toKdeform eiastica,,y- ^flat surfa- - —:a 
vXZ Itf ^PWeS * kS WaVeIen^h e*ceeds * «*«1 
(mi) olfeMTlT.T mdTndenÜy ana^ed "y A»™ and Tiller (1972), Gnnfeld 0986), Srolovitz (1989), and Gao (1991). The perturbation 
grows to a surface crack running into the bulk of fine crysS timers °0 

the applied stress direction (Chiu and Gao  199^- v»„.   .TfT- 
1993; Yakobson, 1993). Suo and Yu ÜW J2L £ 2£Z% 

assr surface-Gao (i994) and Freund °*> —^ *" 
simterninrstrhri(1991)

<;,
and FreUnd ^ J°nsd°"ir <1993> analyzed the 

breal Jmm m " ," T ■?"^ * 3 ^s™6' ^ Undula«°" -«ay 
temtraLt w ^ ^ at°mS °f the Subs,rate do not di»*e a. «he temperature. Wong and Thouless (1995) studied the ratio of the island 
he,ght and radius as a function of the misfit strain and various sürfacf 
tens,ons. Serfert et al. (1996) demonstrated that the suSace ene™ 
amsotropy is important in island formation ^ 
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1.   Energetics 

What follows describes the essential findings of the initial surface 
instability. To focus on main ideas, we treat the plane stress problem of a 
semi-infinite elastic crystal subject to a uniform stress, a, parallel to 
the free surface of the crystal. The surface tension of the crystal, y, 
is isotropic. 

Consider the energy variation when the flat surface is perturbed. The 
perturbed surface has a larger area than the flat surface, so that Us 

increases with the perturbation. Under a constant load, a body with a 
perturbed surface has a larger displacement at the loading point than a 
body with the flat surface (i.e., the undulation makes a body more 
compliant), so that UE also increases with the perturbation. According to 
(8.1), the surface tension favors the flat surface, but the stress favors the 
perturbed surface: the two forces compete to determine whether the 
perturbation diminishes or amplifies. 

To be specific, perturb the flat surface by a wave of amplitude q and 
period A: 

2irx 
y(x, t) = q(t)cos —-—. (8.2) 

A 

Here, v is the height of the perturbed free surface from the initial flat 
surface, the x-axis coincides with the flat surface, and t is the time. The 
amplitude q is the generalized coordinate in this problem. Following the 
previous authors, we will carry out a linear stability analysis, with q/X «« 1. 
The energies will be calculated to the leading order in q/X, per period per 
unit thickness, relative to the energies of the stressed crystal with the 
flat surface. 

The undulation increases the surface energy by 

ir2y 
Us = —q2. (83) 

This is readily obtained by calculating the length of the curve (8.2). 
Because a change in the sign of q leaves the curve length unchanged, Us is 
proportional to q2 to the leading order in q. 

For a similar reason, the elastic energy variation UE is proportional to 
q2 to the leading order in q. In addition, linear elasticity dictates that UE 
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£SÄ£ '1/r-where Y is Young's —s-A *«—■ 
a-2 

UE = ß — q2 
yl • (8.4) 

1£ZH* a *menSi0n!eSS nUmber of OTd« "nity. An elasticity problem 
of the wavy surface can be solved analytically to the leading order in an 
giving ß = w; see the papers cited previously 

A combination of (8.3) and (8.4) gives the free-energy difference 
between the solid with a wavy surface and the solid with a flS surfac" 

I TT2y TTo-2 \ 

n    T)q- (8-5) 

Jtt£ e7mu d6CreaSeS Whe" "* quanti|y » the bra*et is negative sssron amp,mes when *•waveiength A—* • 
Ac = irYy/or2. (g 6) 

Because the elastic energy is quadratic in the applied stress <r  the flat 
surface undulates under both tension and compression. 

2.    Kinetics 

1,     ,        u /AX      SS conservat,on elates the atomic flux to the nor- 
r^ 1 :*I * "'V " r1^ F°r a --"-P'itude perturbation,! curve length s can be replaced by x. An integration gives 

T _      i      -           ^7TA: y I sm  

A ?• (8.7) 

lo^de^11 °°T* thC VirtUaI ^ disPlace-ent 81 and virtual amplitude 8q. The weak statement (5.20) leads to 

. _ 1 q ~ 7' (8.8) 
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distortion changes the pore volume and shape by a small amount; large 
changes require creep or mass transport. If the crystal creeps rapidly and 
surface diffusion is slow, the pore increases volume and becomes needle- 
shaped in the pulling direction (e.g., Budiansky et al, 1982; Needleman 
and Rice, 1980). 

This subsection is concerned with the situation where surface diffusion 
is so rapid that the crystal creeps negligibly during the time of interest. 
On the basis of several theoretical studies (Stevens and Dutton, 1971; 
McCartney, 1976; Gao, 1992, 1995; Suo and Wang, 1994; Sun et al, 1994,' 
Wang and Suo, 1997), we suggest the following sequence of events in the 
Newcomb and Tressler experiments. When the fiber is under no stress, 
the pore has a rounded shape maintained by the surface tension. When 
the fiber is under a tensile stress, the pore changes shape via surface 
diffusion. Two outcomes are expected. If the applied stress is small, the 
pore reaches an equilibrium shape close to an ellipsoid, as a compromise 
between the stress and the surface tension (Figure 26(a)). If the applied 
stress is large, the pore keeps changing shape and develops a sharp crack 
tip which grows in the direction transverse to the applied tensile stress 
(Figure 26(b)). 

On forming the sharp tip, further crack elongation is no longer limited 
by self-diffusing on the pore surface. Atomic bonds break at the crack tip 
by the intense stress, possibly assisted by the environmental species inside 

(a) O 
r 

(b) o 
I 

t°        t 

I        \ 
FIG. 26. a) A pore under a small stress reaches an equilibrium configuration, which is 

approximately an ellipse, b) A pore under a large stress develops sharp noses, followed by 
subcritical cracking. 
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the pore. The rate of crack growth may be limited by transport of the 
environmental species to, or reaction at, the crack tip (Lawn, 1993). Once 
the crack grows large enough, fast fracture breaks the entire crystal. The 
fiber spends its lifetime mainly in two stages: self-diffusion to grow the 
sharp tip, and the subcritical cracking after the sharp tip has formed. 
Which stage takes the longer time depends on the material, chemical 
environment, and temperature. 

2.    Energetics of Crack Emergence 

Compare two crystals, one with a spherical pore, and the other a 
nonspherical pore. Both crystals are subject to the same tensile load 
remote from the pores. The pores have the same volume. Because the 
sphere has the minimal surface area among pores of the same volume, the 
nonspherical pore increases the surface energy Us. Because a body with a 
flattening pore transverse to the loading axis is more compliant than a 
body with a spherical pore, the nonspherical pore increases the elastic 
energy UE. Consequently, according to (8.1), the two forces compete to 
determine the pore shape: the surface tension favors a spherical pore, and 
the applied stress favors a crack. 

Let a0 be the initial pore radius, <x the stress, y the surface tension, and 
Y Young's modulus. Express the relative importance of the elastic energy 
and the surface-energy variations with a dimensionless number 

A =-7^. (8.1D 
7 

When A is small, the surface energy variation dominates, and the pore 
reaches an equilibrium state of approximately ellipsoidal shape. When A is 
large, the elastic-energy variation dominates, and a crack emerges from 
the pore. 

The following reviews the calculation of Suo and Wang (1994). The 
surface tension is taken to be isotropic. Consider a plane-stress problem of 
a cylindrical pore in an infinite crystal, subject to stresses ax and cr2 in 
the x- and y-directions. Initially, the pore is a circle of radius a0. Under 
the action of the surface tension and stresses, atoms diffuse on the pore 
surface, causing the pore to evolve to a sequence of noncircular shapes. 

We will first approximate the evolving shapes by a family of ellipses. 
Mass conservation requires that the area of the ellipses be the same as the 
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area of the initial circle, tra]. Consequently, the system has only one 
degree of freedom, the ratio of the two semi-axes of the ellipses, written as 

(1 +m) 

JT~m) ■ (8-12) 

The circle corresponds to m = 0, the slit in the ^-direction to m ^ 1, and 
the slit in the ^-direction is m -> -1. 

Energies are calculated on the unit thickness basis, and the initial state 
is taken to be the ground state. The surface energy equals the surface 
tension times the perimeter of the ellipse. Relative to the circular pore, an 
elliptic pore has surface energy 

TT a°y       r27r,i        ? i/2 
l/l - m2  h   (1+m      2mcos26,>     dd-2<jra0y.   (8.13) 

The integral is evaluated numerically. 
The stress field can be found in elasticity textbooks. The elastic-energy 

difference between a body with an elliptic pore and a body with a circular 
pore is computed from (4.14), giving 

2iral (    m m 
 cr2

2  
1 -m 1 + m 

The total free energy G is given by (8.1). 
Figure 27(a) displays the free energy at several constant levels of A for a 

pore in a body under ax = <r2. Here, G is the free energy of the crystal 
with an elliptic pore, and the G0 is the free energy of the crystal with a 
circular pore. Each minimum and maximum represents a stable and 
unstable equilibrium state, respectively. Three types of behaviors emerge 
depending on the value of A, i.e., the relative importance of elastic and 
surface energy, as follows. 

(1) When A = 0, the surface tension dominates; G reaches a minimum 
at m = 0, and maxima at m = ± 1. The circular void is stable and the two 
slits are unstable: any ellipse will relax to the circle. 

(2) When A > |, the stress dominates; G reaches the maximum at 
m = 0, and minima at m = ±1. The circle is unstable but the slits are 
stable: any elliptic void will collapse to the slits. 

(3) For an intermediate level, 0 < A < f, G reaches a local minimum at 
m = 0, two maxima at some ±mc, and two minima at m = ±1. The 
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FIG. 27. Biaxial stress state o-j = <x2 = cr. a) The free energy as a function of the void 

shape m at several levels of A. b) The bifurcation diagram is a combination of a subcritical 
pitchfork and two Griffith cracks. 

maxima act as energy barriers: an ellipse of \m\ <mc will relax to the 
circle, but an ellipse of \m\ > mc will collapse to the slits. 

The information above is projected onto the (A, m) plane, Figure 27(b). 
The heavy solid and dotted lines correspond to the stable and unstable 
equilibrium states, respectively. The two slits are stable for any A > 0, but 
unstable for A = 0. The circle m = 0 is metastable when A < |, but 
unstable when A > |. The dotted curve is the unstable equilibrium states, 
referred to as mc in the preceding paragraph. These lines divide the 
(A, m) plane into four regions. A point in each region corresponds to an 
ellipse under a constant level of A, evolving toward a stable equilibrium 
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state, either the circle or the slits. The evolution direction in each region is 
indicated by an arrow. An ellipse below the dotted curve relaxes to the 
circle, and an ellipse above the dotted curve collapses to a slit. An initially 
circular void will collapse if A exceeds the critical value A  =1. 

Figure 28(a) and 28(b) are for CTi/cr2 = 0.8, representative of any stress 
ratios in the interval 0 < aj^ < 1. Several asymmetries are noted. For 
small A, the local minimum no longer occurs at m = 0, nor do the two 
maxima at the same value of \m\. At a critical value, still denoted as Ac, 
the minimum and the maximum on the right-hand side annihilate, but the 
maximum on the left-hand side persists. In Figure 28(b), the values of m 
minimizing G are the heavy-solid lines, and the values of m maximizing G 

-1    -0.8 -0.6 -0.4 -0.2    0     0.2   0.4   0.6  0.8     1 

m 
FIG. 28. Biased biaxial stress state <rx/cr2 = 0.8. a) The free energy as a function of the 

void shape m at several levels of A. b) Stability conditions projected on the (m, A) plane. 
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are the dotted lines. As expected, under the biased stress, the equilibrium 
shape is noncircular even for a small value of A. The heavy-solid curve 
ends at Ac, and is continued by the dotted curve. 

Figure 29 gives the calculation Ac as a function of the stress ratio. The 
critical number does not vary significantly for the entire range of the stress 
ratio. Sun et al. (1994) gave the corresponding results for a three- 
dimensional pore. 

3.    Kinetics 

Next, examine the kinetics of the pore-shape change using the weak 
statement. Normalize all the geometric lengths by the radius of the initial 
circular pore, a0. From the weak statement we find that the problem has a 
characteristic time scale 

a; 
*o = Mfi2y' 

(8.15) 

which is used to normalize the time. Figure 30 plots the semi-axis of the 
ellipse, a, as a function of the time, for several levels of the loading 
parameter A. The body is remotely under stress state cr1 = a2. The initial 
value is arbitrarily assigned to be a/a0 = 1.01 at t = 0. The pore spends 
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FIG. 29. The critical number Ac as a function of the stress ratio. 
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most of its time deviating from the circle. After it became somewhat 
elliptic, the shape change is rapid. 

C.   NOSING, CUSPING, AND SUBCRITTCAL CRACKING 

Chiu and Gao (1993) and Yang and Srolovitz (1993) went beyond the 
linear stability analysis of Section VELA, and studied large deviation from 
the flat surface. They found that surface cracks emerge and grow into the 
bulk of the crystal. In Section VTII.B, we have approximated the evolving 
pore as ellipses. The pore shape, however, may significantly deviate from 
an ellipse during evolution. Wang and Suo (1997) allowed more degrees of 
freedom for the pore shape, determined the elastic field around the pore 
with a conformal mapping, and traced the evolution of the pore shape. 

We next summarize the findings of these studies in the context of the 
shape change of a pore. The critical loading level, Ac, is still given 
approximately by the curve in Figure 29. When the loading level is below 
Ac, the circular pore evolves to a rounded shape, approximately elliptical 
if CTX  ¥= <72. 

When the loading level exceeds Ac, the circular pore evolves with nearly 
elliptical shapes in the beginning, then develops noses, and sharpens to 
become cusps, as schematically illustrated in Figure 28(b). The noses 
shorten diffusion length and further concentrate stress: this is a self- 
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amplifying process. The time needed from a circular shape to develop 
cusps takes the form 

'cusp = tQg(A). (8.20) 

When A just exceeds Ac, fcusp is on the same order of the characteristic 
time tQ. When A » Ac, fcusp is only a small fraction of the characteristic 
time t0. 

When the curvature at the nose tips increases and the noses become 
cusps, the stress becomes singular at the cusp tip. The stress field around a 
cusp tip has the same structure as that around a crack tip. The chemical 
potential at the cusp tip is ill-defined, because the cusp tip is no longer in 
local equilibrium. The situation is analogous to a triple junction with very 
low surface tension compared to the grain-boundary energy, Section U.E. 
Physically, another kinetic process takes over to limit the crack-extension 
velocity. If dislocations are unavailable or immobile, atomic bonds may 
cleave on the plane directly ahead of the cusp. The rate of crack extension 
may be limited by the transport of the environmental species or reaction at 
the crack tip (Lawn, 1993). 

A common phenomenological description gives the crack velocity a 
depending on the driving force at the cusp, /, such as 

ä = Cfn, (8.21) 

where C is a rate coefficient, and typically n > 1; both parameters are 
used to fit the data of subcritical cracking experiments. The driving force 
here is defined as the free-energy reduction associated with the crack- 
advancing unit distance, namely 

8G= -/5a. (8.22) 

The driving force is related to Irwin's elastic-energy rate, &, and surface 
tension y as 

f=S?-2y. (8.23) 

IX.   Electromigration on Surface 

Interconnects in integrated circuits are made of aluminum alloys. They 
have small cross sections (less than 1 /xm wide and about 0.5 /x,m thick), 
carry electric current up to 1010 A/m2, and operate near half of aluminum's 
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melting temperature (933° K). The flowing electrons exert a force on 
aluminum atoms (i.e., the electron wind force), motivating aluminum 
atoms to diffuse. The phenomenon—mass diffusion directed by electric 
current, known as electromigration—causes reliability problems in inte- 
grated circuits; see Thompson and Lloyd (1993) for a survey. This section 
reviews phenomena related to electromigration on surfaces. 

A.   SURFACE DIFFUSION DRIVEN BY THE ELECTRON WIND 

1.    Electron Wind Force 

To outline essential behaviors, we examine a plane problem of a 
cylindrical pore in a conductor, Figure 31. Assume that atomic diffusion on 
the pore surface is the only mass-transport process. The electric field 
vector Ej is the gradient of the potential <f>: 

Ei= -4>,t- (9.1) 

Electric charge conservation requires that the electric current density 
vector, jj, be divergence-free: 

Ji,i - o. 

The electric field relates to the current density by Ohm's law 

E5 - pji, 

(9.2) 

(9.3) 

where p is the resistivity. Aluminum crystal has a cubic symmetry, so that 
the resistivity is the same in all directions. 

>»x 

FIG. 31. A pore in an interconnect subjected to an electric field. 
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An aluminum interconnect is typically subject to an electric field below 
1000 V/m. This electric field is amplified at the pore. For a pore without 
sharp edges, the amplification factor is about 2. Consequently, the electric 
field inside the pore is much lower than the electrical breakdown field of 
vacuum or dry air (around 1 MV/m). The pore can be modeled as an 
insulator, namely, jini = 0 at the pore surface. 

The component of the electric field tangential to the pore surface is 
Et = -d<f>/ds, where s is the curve length along the pore surface. The 
electron wind exerts a force on atoms on the pore surface. The force per 
atoms is proportional to the electric field Et: 

FE=-Z*eEt, (9.4) 

where Z*(> 0) is the effective valence, and e(> 0) the magnitude of the 
electron charge. The negative sign means that the force is in the direc- 
tion of the electron flow. The effective valence may depend on crystal 
orientation. 

2.    Weak Statements 

Let G be the free energy of the system, consisting of surface energy and 
electrostatic energy. They both vary when the pore changes shape. The 
relative magnitude of the two energies is described by a dimensionless 
number sE2R0/y, where R0 is the length representative of the pore size, 
y the surface tension, and s the permittivity of the medium inside the 
pore. For typical values, this number is much smaller than unity. Conse- 
quently, we will ignore the electrostatic energy, and take the free energy to 
be the surface energy: 

G = J yds. (9.5) 

The integral extends over the pore surface. The surface tension y may 
depend on crystal orientation. 

As before, we define the driving force for mass diffusion using virtual 
motion. Let 81 be the mass displacement (i.e., the number of atoms across 
unit length on the surface). Associated with this virtual motion, the free 
energy changes by 8G, and the electron wind force does work JFE 81 ds. 
Define the diffusion driving force, F, by 

J Folds = -8G + JFE8Ids. (9.6) 
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In other words, F is the reduction in the free energy plus the work done by 
the electron wind, associated with one atom moving unit distance on the 
surface. Evidently, (9.6) is an extension of (5.5). 

Mass conservation takes the same form as in Section V, but a different 
sign convention is adopted here: the normal vector on the pore surface n 
now points to the solid. Mass conservation relates the virtual migration of 
the surface 8rn to the virtual mass displacement 81: 

n<?(5/) 
SrH = — . (9.7) 

dS 

Here Ü is the volume per atom. The surface velocity, vn, relates to the 
atomic flux, J, by a similar relation: 

ÜSJ 
"» = -7— (9-8) 

OS 

The linear kinetic law connects the flux with the total diffusion driving 
force: 

/ = MF. (9.9) 

Inserting (9.9) into (9.6), we obtain the weak statement of the problem: 

f — 8Ids= -8G + JFE8Ids. (9.10) 

The actual flux / satisfies (9.10) for arbitrary virtual motion of the surface. 
Of all virtual flux /, the actual flux minimizes the functional 

n = G - JFEJds + f — ds. (9.11) 

3.   Equations for Isotropie Conductor 

Next, consider a conductor having isotropic surface tension and effective 
charge. The total driving force for atomic diffusion on the pore surface is 

üydK 
F= -Z*eEt+ ——. (9.12) 

ds 

The first term is the electron wind force, and the second the capillary 
force. The curvature K is positive for a rounded pore. 
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A combination of equations (9.8), (9.9), and (9.12) gives 

dx d2 

— =M — 
dt ds n._ =M — (Z*e<f> + nyK). (9.13) 

The left-hand side is the velocity normal to the pore surface. This equation 
governs the motion of the pore surface. 

B.   PORE DRIFTING IN THE ELECTRON WIND 

Small pores often appear in aluminum interconnects to relieve stresses 
caused by thermal-expansion mismatch or electromigration. The pores may 
move in the electron wind (Shingubara and Nakasaki, 1991; Besser et al., 
1992; Arzt et al, 1994; Marieb et al., 1995). Since electrons flow in the 
direction opposite to the electric field direction, atoms diffuse on the pore 
surface as indicated in Figure 31. Consequently, the pore migrates in the 
direction of the applied electric field. 

Ho (1970) showed that, in an infinite isotropic conductor under a remote 
electric field, a circular pore can migrate without changing its shape. His 
solution is summarized as follows. Figure 31 illustrates a circular pore, 
radius RQ, in an infinite conductor subject to a remote electric field E. 
The electric field is nonuniform in the conductor, but is uniform inside the 
pore and equals IE. Because the electric potential is continuous across the 
pore surface, Et is also continuous across the surface. Consequently, 
the electric field component tangential to the pore surface is 

2Ey 
£,= - — . (9.14) 

L0 

The electron wind force is 

2eZ*Ey 
FE=—^JL. (9.15) 

The isotropic surface tension does not cause diffusion on the surface of a 
circular pore, so that (9.15) is also the total diffusion-driving force. 

On the pore surface in Figure 31, A is a symmetry point where the flux 
vanishes, and B is a point at height y. Let the circular pore translate at a 
uniform velocity u in the ^-direction. In unit time, atoms of volume yv 
(per interconnect thickness) are removed from the segment AB, and flow 
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out of the segment at point B. Mass conservation requires that the flux at 
point B be 

yv 
y=-. (9.i6) 

Connecting (9.15) and (9.16) with the kinetic law / = MF, one obtains 
the velocity of the pore 

ÜMZ*eE 
v = 2 . (9.17) 

The pore drifts in the direction of the applied electric field, at a velocity 
proportional to the applied electric field, and inversely proportional to the 
pore radius. 

For a spherical pore in an infinite conductor subject to a remote electric 
field E, the electric field in the pore is uniform and equals 3E/2. The 
velocity of the pore takes the same form as (9.17), with the coefficient 2 
replaced with 3. Ho (1970) also studied drifting of a rigid inclusion. Ma and 
Suo (1993) showed how an Al2Cu particle drifts in an aluminum matrix, as 
both copper and aluminum atoms diffuse on the particle-matrix interface. 
Suo (1994) studied the migration of edge-dislocation loops when atoms 
diffuse along the dislocation cores in the electron wind, and proposed the 
process as a mass transport mechanism in aluminum interconnects when 
other mechanisms are slow or absent. 

The phenomena of defect migration provide means to determine atomic 
mobility experimentally. For example, by measuring the velocity and radius 
of a pore migrating in aluminum under a given electric field, one deter- 
mines the parameter Z*M from (9.17). An aluminum interconnect is 
usually covered by a thin film of aluminum oxide. The oxide film usually 
covers a pore near the surface, which should insulate the pore surface 
from contamination. 

C.   PORE BREAKING AWAY FROM TRAP 

Grain boundaries and triple junctions may trap pores. Figure 32 shows a 
pore attached on a grain boundary. In the absence of the electric field, the 
pore eliminates part of the grain-boundary area, and therefore is in a 
low-energy state. Subject to an electric field, the pore moves by surface 
diffusion, and may break away from the grain boundary. Li et al. (1992) 
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grain boundary 

FIG. 32. A pore trapped by the grain boundary and driven by the electron wind. 

and Wang et al. (1996) estimated the electric field needed for the pore to 
break away from a grain boundary. 

Denote fT as the force acting on the pore by the trap. For example, 
when the pore tries to break away from a grain boundary of tension yb, 
the grain boundary exerts a force (per interconnect thickness) on the pore, 
fT = 2yb, in the direction opposing the breakaway. In equilibrium this 
force balances the electron wind force, and surface diffusion stops. Let the 
pore undergo a virtual translation in the ^-direction by a displacement 8a. 
Mass conservation requires that 81 = ySa/Ü. In equilibrium, the total 
virtual work vanishes: 

JFE8Ids -fT8a = 0. (9.18) 

Approximating the pore by a circle in integration, we obtain that 

Z*eER2
0        1 

ClfT 2TT 
(9.19) 

With material properties fixed, there exists a critical value of ERl, above 
which the pore breaks away from the grain boundary. The numerical value 
on the right-hand side of (9.19) will change if the pore surface is allowed to 
change shape in the electron wind. The problem has not been solved 
exactly. 

Pore attachment and breaking away are evident in many experimental 
studies (e.g., Besser et aL, 1992; Kraft et al, 1993; Marieb et al, 1995). 
Careful observations would lead to an estimate of the effective valence Z*. 
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D.   TRANSGRANULAR SLITS 

Experimental evidence accumulated in the last few years has shown that 
an aluminum interconnect with a bamboo-like grain structure often fails 
by a transgranular slit. Micrographs of such slits were first published by 
Sanchez et al. (1992) and Rose (1992). The slits are about 100 nm thick, 
and nearly perpendicular to the current direction. The faces of a slit 
and its running direction favor special crystalline orientations. Joo and 
Thompson (1993) observed slits in single crystal aluminum interconnects. 

It was, however, uncertain how the slits form by looking at the micro- 
graphs taken after the aluminum interconnects had failed. In a sequence 
of micrographs taken in interrupted electromigration tests, Kraft et al. 
(1993) and Arzt et al. (1994) discovered that pores not only drift, but also 
change shape. A rounded pore forms somewhere in the aluminum inter- 
connect, travels for some distance, enlarges, and collapses to a slit. These 
authors also suggested a mechanism by which a pore changes shape. 
Figure 33 illustrates two asymmetric pore shapes. The shape in Fig- 
ure 33(a) is critical because the electromigration flux from b to c is larger 
than that from a to b, so that mass depletes from b, and the pore 
elongates in the direction normal to the interconnect. By contrast, the 
shape in Figure 33(b) is uncritical because the electromigration flux from c 
to b is larger than that from b to a, so that mass accumulates at b, and 
the pore elongates in the direction along the interconnect. 

Two forces compete to determine the pore shape: the electron wind 
favors a slit, but the surface tension favors a rounded pore. On examining 
the expression for the driving force (9.11), Suo et al. (1994) pointed-out 

(a) critical (b) uncritical 

FIG. 33. a) A pore with the critical asymmetric shape, b) A pore with the uncritical 
asymmetric shape. 
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that the relative importance of the electron-wind force and the capillary 
force is measured by a dimensionless number 

Z*eERl 
X - -^ (9.20) 

where R0 is the radius of the rounded pore, and E the applied electric 
field. When x is small, the surface energy dominates, and the pore 
remains rounded. When x is large> the electron wind dominates, and the 
pore collapses to a slit. Note that the number has the same form as that 
for a pore to break away from a trap (9.19). Suo et al. (1994) also estimated 
the velocity and width of a well-formed slit. 

Yang et al. (1994) and Maroudus (1995) attempted to estimate the 
critical number for the shape instability, xc • To circumvent the difficulty of 
solving the electric field around the pore, Yang et al. considered a model 
problem where the medium inside the pore is conducting and has the same 
resistivity as that of aluminum, and showed that such a pore becomes 
unstable above xc 

= 10-65. 
Marder (1994) carried out a rigorous linear-stability analysis. He con- 

firmed the result above of the conducting pore. However, for the more 
realistic model, i.e., a circular insulating pore in an infinite conductor, he 
found that the pore is stable against infinitesimal shape perturbation for 
arbitrarily high x- Mahadevan and Bradley (1996) independently carried 
out the same analysis. 

Linear stability analysis has its limitation. A pore that is stable against 
infinitesimal perturbation need not be stable against finite perturbation. In 
practice, the initial pore is never a perfect circle; deviation may result from 
surface-tension anisotropy, finite-interconnect width, thermal stress, etc. 
To determine the pore stability under practical conditions, one must study 
finite initial imperfection and large shape change. 

Kraft and Arzt (1995) and Bower and Freund (1995) studied numerically 
the stability of an insulating pore in an interconnect of a finite width. They 
determined the electric field in the conductor by using finite-element 
methods, and updated the pore shape according to the electron wind and 
capillary forces. A rounded pore is unstable above a critical level, xc> 
whose value depends on the initial pore radius to the linewidth ratio, 
R0/w. Marder's linear-stability analysis shows that xc ~* °° as Ro/w ~~* 0- 
The complete *c(i?0/w) function is unavailable at this time. 
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Wang et al. (1996) considered an unsulating pore in an infinite conduc- 
tor, and introduced finite imperfection to the initial pore shape. They used 
a conformal mapping to determine the electric field, and the weak state- 
ment to update the pore shape. They showed that the pore becomes 
unstable above xc> the magnitude of which depends on the type and 
magnitude of the initial imperfection. For example, the initial pore is taken 
to be an ellipse with the two semi-axis 

(l/l + s2 - s)R0, (i/l + s2 + s)R0. 

The form is chosen so that the area of the ellipse is irRl. The imperfec- 
tion e takes finite values. As before, we use the characteristic time 

'■ " Wty (9-21) 

to normalize the time. Figure 34 shows the snapshots at time interval 
0.06f0 of a pore with initial imperfection s = 0.1. When x is small, the 
pore migrates and changes its shape, but finally reaches a steady state. 
When x is large, the pore collapses to a slit. Figure 35 plots xc 

as a 
function of the imperfection s. The critical value drops sharply when 
moderate initial imperfection is introduced, and decreases somewhat 
thereafter. 

X = 33 

C %=34 

0 5 10 15 20 25 

Void Location x/RQ 

FIG. 34. Each row is a sequence of snapshots of a pore migrating in an interconnect, in the 
direction of the applied electric field, from the left to the right. The void is a perfect insulator. 
The initial perturbation is s = 0.1. 
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DAMAGE EVOLUTION AND 

ACOUSTIC EMISSION MECHANISMS 

IN a2+ß / SCS-6 TITANIUM MATRIX COMPOSITES 
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University of Virginia 
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Abstract - Damage evolution and acoustic emission mechanisms have been 
investigated during the tensile deformation of two a2 + ß titanium aluminide 
matrix composites reinforced with SCS-6 silicon carbide fiber. The alloys had 
distinctly different ß phase morphologies and resulting ductilities. A Ti-14A1- 
21Nb matrix composite with a matrix failure strain significantly greater than the 
fiber exhibited annular microcracking of a brittle ß-depleted matrix zone 
surrounding the fibers. Acoustic emission measurements indicated that this 
damage process increased rapidly near the composite yield point and continued at 
a constant rate thereafter. Acoustic emission detection of fiber fracture indicated 
that failure occurred after about four fiber fractures at a significantly lower stress 
than predicted by a global load sharing model. A Ti-13Al-15Nb-4Mo-2V-7Ta 
matrix composite with a matrix failure strain less than the fiber exhibited multiple 
matrix cracking. Acoustic emission measurements indicated that matrix cracking 
initiated well below the stress where primary matrix cracks were first visually 
observed. Failure occurred after numerous fiber fractures at a significantly lower 
fiber stress than predicted by a fiber bundle model. Damage evolution data 
obtained from the calibrated acoustic emission measurements were combined with 
a simple micro-mechanical model to predict the inelastic contribution of matrix 
cracking to the overall deformation behavior. 
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1. INTRODUCTION 

Intermetallic matrix composites (IMC) consisting of titanium or nickel aluminides reinforced 

with continuous silicon carbide fiber have attracted interest because of their potentially high 

specific stiffness, strength and creep resistance over a wide range of operating temperatures [1-3]. 

Composites with matrices based on Ti3Al+Nb (a2 + ß) alloys and creep resistant SCS-6 SiC 

fibers are being explored for use above the temperature range of conventional titanium alloys 

(~600°C). The mechanical properties of these a2 + ß / SCS-6 composites are a function of their 

constituents properties [4-6], the interface debond and/or sliding stress [7] and the method or 

conditions used for their fabrication [8]. A variety of micromechanical models [6,8-12] have been 

proposed to predict the mechanical behavior of this class of composites. These analyze the 

consequences of fiber fragmentation and/or matrix yielding/cracking. Interface debond/sliding 

behavior are often included [8,11,12] while some also consider residual stresses arising from the 

fiber-matrix thermal expansion coefficient mismatch [13,14] or additional fiber microbending 

stresses and fiber breaks incurred during consolidation processing [8]. A key aspect of 

understanding and modeling the mechanical behavior of these composites involves a correct form 

for the evolution of damage during loading. 

Since damage processes in IMC's are often brittle, they are likely to be accompanied by 

detectable acoustic emission (AE) [15-18]. Numerous investigations have reported AE from metal 

matrix composites (MMC's) [19-21]. In some, attempts have been made to locate sources [20,21]. 

In others, parameters of the recorded signals (e.g. amplitude, frequency spectra, etc.) have been 

proposed to "characterize" the AE events and to attempt the differentiation of one source "type" 

from another [19]. Many of these studies have relied upon ad hoc or empirical methods using data 

collected with instrumentation that is not capable of reproducing many important characteristics 

of the AE signal. Combined with an absence of models that establish fundamental relationships 

between damage mechanisms and signal parameters, such studies have been of limited value for 

characterizing damage evolution. 

Here we pursue an alternative approach. The theoretical relationship between damage events 

and AE signals is briefly reviewed [22,23]. Because the dynamic elastic Green's tensor (this maps 

an AE source to the motion responsible for an AE signal) is uncalculated for conventional 

composite test pieces, a pulsed laser calibration method is used to determine an empirical 

relationship between the dipole magnitude (i.e. AE moment strength) of an AE event and a scalar 

parameter related to the energy of its corresponding AE signal. This allows recovery of the 

1 
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magnitude of the damage event (e.g. the crack opening volume) from the recorded AE. We do not 

attempt to seek its time dependence, its location nor its orientation within the sample, though this 

could be accomplished in principle. Two different a2 + ß / SCS-6 composites are studied. 

Correlations between the differing damage mechanisms, their acoustic emissions and the 

observed tensile behavior are then used to access the significance of damage evolution upon 

tensile performance. 

2. ACOUSTIC EMISSION FUNDAMENTALS 

2.1 Natural acoustic emission 

Burridge and Knopoff [22] treated an abrupt failure process in an elastic body as an expanding 

dislocation loop and expressed spatial and material characteristics of the defect in terms of a 

distribution of "equivalent" body forces. Ignoring spatial variations of the source region (i.e. point 

sources), a single source centered at x' can be modeled by a source moment tensor [23] 

Ma = cijuWZ[ (i) 

where i and j indicate the direction and separation of body force dipoles. c^ is the elastic 

constant tensor, [uk] is the displacement discontinuity across the defect in the ik-th direction and 

£j is the area of the source projected onto a plane having a normal in the /-th direction. 

Consider the creation of a penny-shaped crack in an isotropic linear elastic medium under 

mode I loading. If the crack face displacement in the x{ direction is A, and the crack face area, A, 

has a normal also in the x{ direction, then three orthogonal dipoles model the source [16,22]; 

M,7 = 
(X + 2n) 0        0 
0X0 
0      0       X 

AA (2) 

where X and u. are the Lame constants. The product, AA, is the cracks interior volume. 

For a fiber fracture source in a unidirectional composite under tensile load in the fiber 

direction, mode I cracking of the fiber is usually accompanied by mode II shear at the fiber-matrix 

interface. Static equilibrium considerations necessitate that sliding must occur along a shear 

recovery length, I = rfT/2xs, where rj is the fiber radius, \s is the sliding stress at the interface 

and T is the fiber stress at the time of fracture and the remote stress thereafter. It is simple to show 

a crack opening; 

T2 4=h. (3) 
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where Ef is the Young's modulus of the fiber. Since far field contributions to the source moment 

tensor from shear at the fiber-matrix interface cancel due to symmetry, we find; 

M,y = 

(Xf+2\if) 0      0 

0 

0 0 KL 

KrJT2 

2Efxs 
(4) 

where the/subscripts indicate parameters for the fiber. 

The far field surface displacements (i.e. the AE signal) can also be modeled. Provided the 

source to receiver distance and the wavelengths of interest are much larger than the source 

dimensions [24], the time-dependent displacement in the i-th direction, w .(x, t), at location, JC, 

and time, t, due to wave motion excited by body force dipoles at (*', f) is obtained by a 

convolution; 

ui(x, t) = Mjk\'QGijtk{x\x\ t-t')S{t')dt' (5) 

where S(t') is the source time-dependence (e.g. the crack volume history) and G, k(x;x', t-t') is 

the spatial derivative of the dynamic elastic Green's tensor [23]. It represents the displacement at 

(x, t) in the i-th direction due to a unit strength impulsive body force dipole concentrated at 

(*', 0, acting in the y-th direction, with separation in the k-th direction. The dynamic elastic 

Green's tensor therefore represents the bodies elastic impulse response. Presently, this is 

uncalculated for conventional composite test pieces. 

2.2 Artificial acoustic emission 

The absorption of a laser pulse at the surface of a metal causes a transient thermal expansion 

that can be used for generating artificial AE [25,26]. For a uniform pulse of duration, /0, the 

maximum increase in surface temperature is 

AT  = 270 /—Ü- s üA/7Cpc J: (6) 

where p is the mass density of the metal, cp is the specific heat capacity, k is the thermal 

conductivity and IQ is the absorbed laser flux density [26]. The thermoelastic source is well 

modeled by two orthogonal dipoles oriented in the plane of the irradiated area [26]; 

Mu =M22 = [X + l^(l-R)E0 (7) 
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where a is the linear expansion coefficient of the metal, R is the reflectivity [26] and E0 is the 

pulse energy. Thus, laser pulses can create dipoles of known magnitude which can be used to 

calibrate the acoustic response function of a test samples. 

3. EXPERIMENTAL 

3.1 Materials 

Two cc2 + ß/ SCS-6 composite samples (4 ply) were supplied by General Electric Aircraft 

Engines (GEAE) (Cincinnati, OH). They were fabricated using plasma sprayed monotapes [27] 

by consolidation at 900-950°C [28]. The gauge sections of the dogbone samples were 25 mm 

long, 6 mm wide and 1 mm thick. One sample contained a 0.25 volume fraction, Vf, of SCS-6 

fibers in a Ti-14Al-21Nb (wt.%) matrix while the other contained a 0.30 fiber volume fraction in 

a Ti-13Al-15Nb-4Mo-2V-7Ta (wt.%) matrix. The Ti-13Al-15Nb-4Mo-2V-7Ta matrix sample 

received a post fabrication heat treatment consisting of 1180°C / 6-10 minutes / He quench; 

870°C / 1 hour / He quench; 705°C / 8 hours / vacuum cool. Similarly processed fiberless matrix 

samples were also supplied. 

Elastic residual stresses were computed using the two phase composite cylinder methodology 

[29] (Table 1), with input properties found in Table 2. For the matrices, the linear expansion 

coefficient, a, and Poisson's ratio, v, of titanium were used. The matrix radii of the concentric 

cylinders were 140 um and 128 |j.m which corresponded to matrix volume fractions, 

Vm = 1 - Vf, of 0.75 and 0.70. 

Table 1. Elastic residual stresses (at the fiber-matrix interface) in MPa. 
Ti-14Al-21Nb/SCS-6 

Stress component Fiber Matrix 

Radial -194 -194 
Circumferential -194 323 
Axial -665 222 

Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 
Fiber Matrix 

-260 -260 
-260 484 
-812 348 

Fiber push-out tests on 0.50 mm thick samples were used to estimate fiber-matrix interface 

debond/sliding stresses [34]. For the Ti-14Al-21Nb / SCS-6 system, the mean of five tests gave a 

complete debond stress of 116 MPa and an initial sliding stress, Ts, of 113 MPa. The respective 

standard deviations were 14 MPa and 10 MPa. For the Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 

system, the complete debond stress was 154 MPa and the initial sliding stress was 123 MPa. The 

respective standard deviations were 18 MPa and 4 MPa. The debond surfaces of the Ti-14A1- 

21Nb / SCS-6 system were rough while that of the Ti-13AM5Nb-4Mo-2V-7Ta / SCS-6 system 

were smooth [35]. 
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A Weibull type analysis was used to characterize the tensile strength of the SCS-6 fiber in its 

pristine state [36,37]. For fibers having a length L, the expected value is of the form [38]; 

T = ' Urn' 
1 

+ - 
m (8) 

where T(TI) = J^71    exp(-z)dz is the Gamma function. Mean strengths [39] of tests with 

pristine 10-70 mm gauge length samples [40] gave m = 17.3 and a0 = 5270 MParnm1/m [35]. 

Table 2. 

SCS-6 
Radius 
Young's modulus 
Poisson's ratio 
Linear expansion coefficient 
Weibull modulus 
Weibull normalizing constant 

Titanium 
Young's modulus 
Poisson's ratio 
Linear expansion coefficient 
Mass density 
Specific heat capacity 
Electrical conductivity 
Relative permeability 
Thermal conductivity 
Melting temperature 

Ti-14Al-21Nb 
Young's modulus 
Yield stress 

Ti-13 Al-15Nb-4Mo-2V-7Ta 
Young's modulus 
Fracture stress 

Ti-14Al-21Nb/SCS-6 
Fiber volume fraction 
Interface sliding stress 
Temperature change 
Processing induced fiber breaks 

Ti-13 Al-15Nb-4Mo-2V-7Ta / SCS-6 
Fiber volume fraction 
Interface sliding stress 
Temperature change 
Processing induced fiber breaks 

Properties summary (25°C). 

Symbol Units Value [Reference] 

rf urn 70 [30] 
Ef GPa 400 [30] 
vf - 0.14 [31] 
af 1/K 4.8- 10"6 [31] 
m - 17.3 
°o MPamm1/m 5270 

E GPa 116 [32] 
V - 0.32 [32] 
a 1/K 8.5 • 10"6 [32] 
P gm/cm3 

4.5 [33] 
CP J/(kgK) 522 [33] 
s l/(Hß-m) 2.38 [32] 

Vr - 1 [32] 
k W/(m-K) 21.9 [33] 

T K 1953 [33] 

Em GPa 100 

°y MPa 580 

Em GPa 114 
*u MPa 601 

Vf _ 0.25 
*s MPa 113 

AT K -900 
Po break/m 6 

vf „ 0.30 
\ MPa 123 

AT K -1155 
Po break/m 10 
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3.2 Mechanical testing 

An electromechanical testing machine equipped with a 50 kN loadcell, serrated face wedge 

action grips and a 10% capacity extensometer with a 12.7 mm gauge were used to measure stress 

and strain at ~25°C. Pressure clips and a thin layer of epoxy held the extensometer knife edges 

firmly in place, Fig. 1. Fiberless matrix samples were tested at a constant displacement crosshead 

rate of 0.025 mm/min while composite samples were tested at a slower rate of 0.005 mm/min to 

accommodate the large amount of on line AE data processing. Stress, strain and time were 

recorded on a personal computer at 2 second intervals. 

3.3 Acoustic emission measurement 

Two point contact piezoelectric sensors were symmetrically located near either end of the test 

samples (see Fig. 1). The sensors were our own version of a broad-band conical device [41] 

designed to measure out of plane displacement with no significant resonance in the 10 kHz to 2 

MHz range [42,43]. They were connected via short coaxial leads to charge amplifiers having a 

rated 250 mV/pC sensitivity and 10 kHz to 10 MHz bandwidth. 20 kHz high-pass and 2 MHz 

low-pass filters were used after the amplifiers to attenuate environmental noise. 

A LeCroy (Chestnut Ridge, NY) 7200 Precision Digital Oscilloscope recorded the AE. 20,000 

data points were recorded per channel with 8 bit resolution over a 5 msec time interval (i.e. a 4 

MHz sampling rate). The trigger point was offset to allow 4.5 msec of data beyond the trigger 

point and full capture of the exponential "ring-down" of most signals. A 0.1 V/division setting 

was used as the primary channel. When strong events overloaded the primary channel, a 1 V/ 

division channel also captured the signal ensuring no loss of data. The time of the AE and their 

root mean square (RMS) voltages were written to the fixed disk drive of the oscilloscope. 

3.4 Acoustic emission calibration 

A 1.064 |im Nd: YAG Q-switched pulse laser with a 7 nsec (FWHH) pulse duration and 6 mm 

spot diameter was used to generate the thermoelastic AE source. Using t0 -1 nsec and properties 

of titanium, Table 2, Equation (6) indicated that melting begins at EQ - 108 mJ for a sample at 

~25°C. Ten RMS voltage and laser energy measurements were made every -10 mJ up to -100 

mJ, Fig. 2. The AE moment strength of the thermoelastic source; 

M = MU + M22 (9) 

was obtained from Equation (7) as M = 0.54£0. The relation between the AE signal RMS, 

VRMS (in mV), and the AE moment strength, M (in N-mm), was well fitted by: 
VRMS= 270-lnM-233 (10) 
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This procedure indicated a logarithmic dependence of signal upon source strength similar to that 

used for seismic magnitude scaling [44-46]. 

4. THE Ti-14Al-21Nb/SCS-6 SYSTEM 

4.1 Microstructure characterization 

The fibers were more or less uniformly spaced, Fig. 3, while the matrix consisted of an 

equiaxed cc2 (ordered hep) Ti3Al intermetallic phase with intergranular ß (bcc). By-products of 

the consolidation process included a -3 \im thick fiber-matrix reaction product, broken fibers 

(po-6 breaks/m) and fiber microbending [27]. Radial (-1 per fiber, see Fig. 3) and annular 

cracks (-6-7 crack/mm) were also present. Both types of crack often extended into a surrounding 

(-10 urn thick) ß-depleted matrix zone (see Fig. 3) and sometimes partially through the SCS 

layers. Apart from the ß-depleted zones, the fiberless and composited matrices were quite similar. 

4.2 Stress - strain - AE behavior 

The fiberless Ti-14Al-21Nb matrix behaved in an elastic-nearly perfectly plastic fashion with 

a Young's modulus, Em, of 100 GPa [35]. Yielding initiated at a stress, cy, of 580 MPa and a 

strain of 0.60%. Failure occurred at a stress of 612 MPa and a strain of 4.50%. 10 acoustic 

emissions were detected with a mean AE moment strength of 2.6 N-mm (0.2 N-mm standard 

deviation) during nominally elastic loading. 

The Ti-14Al-21Nb / SCS-6 composite initially exhibited a slight non-linearity due to sample 

bending, Fig. 4. A linear (Stage I) behavior then occurred up to a stress, a, of 475 MPa and a 

strain, e, of 0.29%. A brief transition (indicative of matrix plasticity) and a second (Stage II) 

linear region of differing slope followed [38,47,48]. The measured modulus in Stage I was 178 

GPa while in Stage II it was 88 GPa. Tensile failure occurred at a stress of 925 MPa and a strain 

of 0.79%. 1841 emissions (see Fig. 4) were detected throughout the loading. The mean AE 

moment strength was again 2.6 N-mm (1.3 N-mm standard deviation). The rate of AE activity for 

the composite increased rapidly as the applied stress exceeded about 400 MPa and approached 

steady state just beyond the point where the transition to Stage II occurred. The final integrated 

moment strength of all composite AE activity was 4710 N-mm. Four strong events having 

M > 10 N-mm were recorded toward the end of the test. 

4.3 Damage observations after testing 

Metallographic examinations of the longitudinally sectioned sample revealed annular ß- 

depleted matrix zone cracks (these extended into the reaction products) which were more or less 

uniformly distributed along all fibers, Fig. 5. The cracks in the gauge section after testing were 

more severe (had a larger area and opening displacement) and were nearly twice as frequent (-11- 
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12 crack/mm) as those in the undeformed grip section. Occasionally these cracks extended all the 

way through the SCS layers and are similar to the observations of other researchers [49-51]. The 

ends of the annular cracks were not found to directly nucleate fracture of the underlying SiC. 

The fracture surface exhibited significant crack deflection with typical fiber pull-out lengths 

of up to a fiber diameter or two [35]. Far from (several mm or more away) the fracture surface, 

there was no evidence of fiber fracture (other than processing damage). However, higher 

magnification uncovered the occasional occurrence of clusters of arrested annular fiber cracks, 

Fig. 6. These crack clusters were randomly distributed throughout the gauge section, but within a 

cluster, they exhibited a regular axial spacing with a -50-60 jim separation. The cracks extended 

-10-15 Jim radially inward from near the midradius boundary (-39.5 u,m from fiber center) and 

towards the carbon core forming an annular ring (see Fig. 6). Nearer to (within a few mm) the 

fracture surface, many closely spaced fiber fractures (less than one fiber diameter apart) and 

arrested annular fiber cracks were present. Just below (within a few fiber diameters) the fracture 

surface, several of the fibers had been extensively shattered, and some into very small wedge- 

shaped fragments running perpendicular to the direction of loading. Other researchers have 

related similar fragmentation to stress waves [52]. 

4.4 Acoustic emission mechanisms 

A typical annular ß-depleted matrix zone crack had a radial length of -13 |im and thus a crack 

face area of, A, of -6200 urn2. The crack opening, A, was -1.0 fim (see Fig. 5 and note that tensile 

loading opens the crack), and so the AE moment strength; 

M = Mn+M22 + Mj3 (11) 

was -1.8 N-mm where Equation (2) and Ti-14Al-21Nb moduli (Table 2) have been used. This 

damage process was therefore near the limit of detectability (M - 2.5 N-mm) and was probably 

responsible for the numerous "weak" signals observed during testing of the composite. 

The four "strong" events having M> 10 N-mm were unlikely to be associated with ß- 

depleted zone cracking. For example, the two emissions which occurred at stresses of 877 MPa 

and 884 MPa had moment strengths of 18.0 N-mm and 51.5 N-mm respectively. We believe that 

these signals were due to fiber fractures. Superposing elastic residual and applied stresses, the 

fiber stress, T, at the time of these fractures was -2200 MPa. From Equation (3), using properties 

found in Table 2, the computed crack opening is -3.8 |im. Equations (4) and (11) then give a 

moment strength of -32.0 N-mm which is comparable to the range of values observed. 
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The short annular fiber cracks were probably not detected if occurring one at a time in these 

tests. They had a typical radial length of -15 u.m, an outer radius of -39.5 |im and hence, an area 

of -3000 um2. Their crack opening was -0.3 |im (see Fig. 6 and note that tensile loading opens 

the crack) which corresponds to a moment strength of -0.5 N-mm. This is below the baseline 

noise level (M ~ 2.5 N-mm) of the tests (their significance is discussed later). 

4.5 Modeled stress - strain behavior 

A global load sharing model modified to account for the effect of fiber breakage induced 

during consolidation processing [8] was used to predict the stress - strain behavior. Elastic 

residual stresses and matrix plasticity were additions to the model. The remote axial fiber and 

matrix stresses were found (elastic residual and applied stresses superimposed) using the 

composite cylinder methodology [29,53,54]. Composite strain (which was primarily controlled by 

elastic deformation of the unbroken fibers) entered the constitutive relation in this manner. 

Because the shear recovery length, / = rf T/2xs, is a positive quantity, the absolute value of this 

was used as a model input during the early stages of loading (i.e. when the fiber is in residual axial 

compression) to ensure that consolidation fiber breaks were properly accounted for. 

In Stage I, the modeled behavior was similar to that measured (see Fig. 4). The onset of matrix 

plasticity (i.e. Stage II behavior) was estimated using a von Mises criterion. Yielding was taken to 

initiate near the edge (-80 Jim from fiber center) of the ß-depleted zone (where the more 

deformable ß phase begins) rather than at the fiber-matrix interface. The predicted axial strain at 

yielding was 0.28% which compared well with the measured value of 0.29%. In Stage II, axial 

constraint imparted by the fibers inhibited plastic flow of the matrix. Furthermore, since the 

maximum strains were small (0.79% axial strain at failure), remote fiber and matrix stresses were 

approximated by superimposing elastic yield point stresses with the additional incremental 

stresses developed after the matrix was deforming perfectly plastically [55]. The latter were 

computed using the elastic composite cylinder solution with an axial strain equal to the 

incremental strain beyond the yield point and tangent Stage II moduli. For the non-hardening 

matrix, the tangent Young's modulus and Poisson's ratio tended to zero and one half respectively, 

the plane strain bulk modulus was replaced by the elastic bulk modulus, k -> E /3( 1 - 2v ), 

and the shear modulus remained unchanged [56]. The fiber retained its original elastic moduli. 

The measured Stage II modulus (see Fig. 4) was -12% less than predicted. Since few fiber 

fractures occurred prior to sample failure, this reduced modulus is believed to be connected to the 

annular ß-depleted zone cracking. 
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The computed fiber and matrix axial stresses at sample failure, ay = 2464 MPa and 

cm = 535 MPa, were reduced from their precomposited values. Thus, neither the fiber nor the 

matrix had achieved the full load bearing capacity exhibited prior to compositing. Although 

additional test data reported by GEAE using samples machined from the same panel had 

computed fiber stresses which were as much as -34% higher [private communication] they were 

still significantly less than the model prediction based upon a retention of the pristine fiber 

strength. Strength measurements of fibers extracted from untested composites of similar 

composition to those tested here indicate that a -20% loss of strength can accompany 

consolidation [57]. The underlying origin of this is at present unclear. It may be linked to 

chemical depletion of SCS layers or to their physical damage during processing. While processing 

damage (including fiber microbending) may lead to reductions in fiber strength when composited, 

fragmentation theory suggests that cumulative failure of the fibers should have occurred prior to 

sample failure. This was observed neither acoustically nor metallographically in our tests and 

indicates a noncumulative mechanism. 

Lastly, we note that some fibers far from the fracture surface contained arrested annular 

cracks (see Fig. 6). Flaws of such a large size can usually exist in brittle silicon carbide fibers only 

when the tensile stress is less than a few MPa. They could have been caused by a combination of 

added static and dynamic stresses arising from damage including nearby fiber breaks [52,58]. 

Displacement constraint imparted by unbroken fibers in the same cross-sectional plane, the 

sometimes large compressive stresses found in regions of SCS-6 fibers [59] and microstructural 

changes at the mid-radius boundary [60] may have contributed to their arrest. Daniel [61] has 

used high speed photoelastic techniques to observe fiber damage of this type in model glass- 

Homalite composites. Were large fiber defects of this type to have occurred before the final 

catastrophic event, they would have significantly weakened the fibers and led to premature 

failure. 

5. THE Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 SYSTEM 

5.1 Microstructure characterization 

The fibers were more or less uniformly spaced, Fig. 7, while the matrix consisted of an 

equiaxed a2 phase in a matrix of transformed ß that contained a fine acicular cc2 + ß 

microstructure. By-products of the consolidation process included a -3 UJTI thick fiber-matrix 

reaction product zone, occasional broken fibers (po~ 10 breaks/m) and fiber microbending. 

Short radial (see Fig. 7) and annular microcracks were observed in the reaction product. No ß- 

depleted matrix zone existed near the fibers. However, islands of -3-5 ^im diameter not having 
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typical <x2 or a2 + (i morphologies were observed near the fibers (see Fig. 7). These etched more 

slowly than the a2 phase and were not found in the corresponding neat matrix. The fiberless and 

composited matrices were otherwise quite similar. Portions of the SCS-6 layers were observed to 

have decohered from the fibers and were trapped in the matrix (see Fig. 7). This coating damage 

has been linked to fiber thermal shock during the plasma spray deposition process [27] and may 

have contributed to the higher interface debond/sliding stresses measured for this system. 

5.2 Stress - strain - AE behavior 

The fiberless Ti-13Al-15Nb-4Mo-2V-7Ta matrix behaved in a brittle fashion with a Young's 

modulus, Em, of 114 GPa [35]. Failure occurred at a stress, au, of 601 MPa and a strain of 

0.50%. 5 acoustic emissions were detected with a mean AE moment strength of 2.8 N-mm (0.3 

N-mm standard deviation). 

The Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 composite exhibited a linear (Stage I) behavior up 

to a stress, a, of 370 MPa and a strain, e, of 0.19%, Fig. 8. Thereafter, unstable tensile behavior 

(including strain reversals and hysteresis) was observed. Other unpublished test data reported by 

GEAE have exhibited similar behavior for this system [private communication]. The strain 

reversals were consistent with the formation of cracks (and an accompanying increased 

compliance) outside the extensometer knife edge contact points. If the opening displacement of 

these cracks exceeded that needed to accommodate the imposed displacement rate, an elastic 

contraction of the gauge section can occur. Tensile failure occurred at a stress of 758 MPa and a 

strain of 0.88%. 1121 emissions (see Fig. 9) were detected but with a mean AE moment strength 

of 38.6 N-mm (248.4 N-mm standard deviation). The AE activity for the composite began at a 

stress of around 50 MPa and occurred at an approximately constant rate up to a stress of 370 MPa 

and a strain of 0.19%. At this point, dramatic increases in signal strength accompanied abrupt 

changes in stress - strain behavior until tensile failure. The integrated moment strength was found 

to be well fitted by a power-law relation; 

° -6   3.7 

JM(r\)dt\ =     1Q^ (N-mm) (12) 
o 

where the composite stress, a, has units of MPa. 

5.3 Damage observations after testing 

Metallographie examinations of the longitudinally sectioned sample revealed extensive matrix 

cracking, Fig. 9, and many fractured fibers (some were associated with consolidation processing 

but the majority occurred during testing), Fig. 10. Annular reaction product and fiber cracks 
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similar to those seen in the Ti-14Al-21Nb / SCS-6 system (see Figs. 5 and 6) were also found. The 

primary matrix cracks traversed the full cross-section and were spaced -0.3-0.9 mm along the 

entire gauge length (see Fig. 9). The secondary matrix cracks (see Fig. 8) were arrested before 

traversing the full cross-section. Often, multiple fiber fractures with spacings of less than a fiber 

diameter (see Fig. 10) were observed far (several mm or more away) from the final fracture plane. 

The annular fiber cracks were again regularly spaced with a -50-60 (xm separation, however, they 

occurred much more frequently, and were more evenly distributed than in the Ti-14Al-21Nb / 

SCS-6 system. While matrix cracks and fiber fractures often penetrated at least one of the SCS 

layers, neither was observed to nucleate damage in the adjacent phase (with the possible 

exception of consolidation processing damage like that shown in Fig. 9. Large matrix crack 

opening displacements (see Fig. 10) were indicative of extensive sliding at the fiber-matrix 

interface. Even so, a relatively planar fracture surface with minimal fiber pull-out was observed 

[35]. Just below (within a few fiber diameters) the fracture surface, several of the fibers had been 

extensively shattered, and some into very small wedge-shaped fragments like that observed in the 

Ti-14Al-21Nb / SCS-6 system. 

5.4 Acoustic emission mechanisms 

Primary matrix cracks were the most likely origin of the many abrupt strain reversals seen in 

the stress - strain curves (see Fig. 8). The crack face areas, A, for these were -4.2 mm2. The first 

primary crack event appeared to occur at a stress, a, of 370 MPa. A simple (one-dimensional) 

micro-mechanical model (see the Appendix) can be used to estimate the crack opening. Using 

Equation (A.8) and data from Table 2, the crack opening, A, is estimated to be -3.0 urn. From 

Equation (2), the moment strength, M = Mn + M22 + Af33, was therefore -4000 N-mm. This is a 

very strong event and appears to be the source of the significant number of observed signals in the 

-1,000-10,000 N-mm range (see Fig. 8). The many events with smaller moments, 

100<M< 1,000 N-mm, occurring after the first primary matrix crack are likely to have been 

caused by either (partial) matrix cracks that were arrested at fibers, or the intermittent extension of 

eventual primary cracks. 

Fiber fractures were estimated to have moment strengths in the -10-50 N-mm range (see 

section 4.5). Thus, many of the numerous events having similar strengths (see Fig. 8) were 

consistent with the extensive, metallographically observed, fracturing of fibers. 

Annular reaction product cracks typically propagated through the entire -3 urn thick fiber- 

matrix reaction product zone surrounding the fibers and thus had crack face areas of -1350 urn2. 

Crack openings were -0.5 urn or less and so the corresponding moment strengths were in the 
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neighborhood of -0.2 N-mm. Similarly, arrested annular fiber cracks were expected to have 

moment strengths of -0.5 N-mm (see section 4.5). Since the estimated strengths of both crack 

types is well below the detection threshold (M- 2.5 N-mm), we conclude that these were not 

acoustically detected in these experiments unless occurring many at a time. 

5.5 Modeled stress - strain behavior 

A simple matrix cracking (with no fiber fracture) micro-mechanical model (see the Appendix) 

was used to model the stress - strain behavior. The crack density evolution can be estimated from 

the AE data by noting that the moment strengths of matrix cracking events were much greater 

than those associated with other damage mechanisms. Let the number of completed matrix cracks 

at a given stress, c, be proportional to the magnitude of the integrated moment data, Equation 

(12). Since there were about 45 cracks observed along the 25 mm gauge length at sample failure 

(i.e. when a = 758 MPa), the crack half spacing dependence on stress is simply; 

10   a 
X ~ 0"n) (13) 0.8 

where o has units of MPa. 

To compute the strain, e, of the composite at a given stress, a, Equation (13) was first solved 

for x . This was then compared to the shear recovery length, /', obtained using Equation (A.l) 

with the remote matrix stress, cm, predicted using Equation (A.2) and parameters cited in Table 

2. The residual fiber and matrix stresses were aj = -812 MPa and oT
m = 348 MPa (see Table 

1). When x > I , the situation was that depicted in Fig. 11(a), and Equation (A.9) gave the strain. 

When x'<l, the situation was that depicted in Fig. 11(b), and Equation (A. 15) gave the strain. 

Comparing results, the measured Stage I modulus of -199 GPa slightly exceeded the model 

prediction (see Fig. 8). This occurs because the (continuous) power-law fit of the integrated 

moment curve, Fig. 8, slightly overestimated the amount of (discontinuous) cracking in this 

region. A rule of mixtures approximation gives a Stage I modulus of 200 GPa indicating that the 

effect of secondary cracking damage on Stage I stiffness is negligible. After the first primary 

crack event (at 370 MPa), the modeled stress - strain behavior compared favorably with the data 

up to a strain of about 0.5%. Beyond this, the modeled stiffness was slightly greater than 

measured (probably a consequence of neglecting fiber fractures in the model) and increased as the 

matrix cracking began to saturate. 

The first primary matrix crack occurred at a strain of 0.19%. This corresponded to a strain 

which was 0.31% less than the measured failure strain (0.50%) of the fiberless matrix. By 
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superimposing the elastic residual and the applied stresses, am = o'm + eEm, the computed axial 

matrix stress at the onset of matrix cracking, 565 MPa, is close to the value measured (601 MPa) 

for failure of the fiberless matrix sample. This may be somewhat coincidental since the flaw 

population that gives rise to a stochastic matrix strength is likely to be affected by compositing. 

Even so, the measured mean crack spacing (-0.56 mm) at failure agrees well with that predicted 

(-0.53 mm) using the Kimber-Keer model [62]. 

The mean fiber stress at failure for fibers bridging a primary matrix crack was 2527 MPa. 

Similar results were reported by GEAE using samples machined from the same panel [private 

communication]. As a lower bound prediction, a fiber bundle model [38] (with a 25 mm bundle 

length and SCS-6 parameters cited in Table 2) suggests bundle failure at a fiber stress of 3502 

MPa and strain of 0.93%. Thus, the measured maximum fiber stress for our test was about 1000 

MPa less than the typical tensile strength of a bundle of pristine, unprocessed fibers. Like the Ti- 

14Al-21Nb / SCS-6 system, the reinforcing fibers have performed in a weakened fashion when 

composited. 

Since the amount of damage to the fibers (fractures and arrested annular cracks) was 

significant and often so closely spaced (see Fig. 10) that static equilibrium considerations could 

not explain the phenomena, dynamic stresses are thought to have contributed to their weakening. 

In fact, the acoustic emissions indicated that stress wave intensity was much greater in this 

composite system than in the Ti-14Al-21Nb / SCS-6 system. This, along with processing induced 

damage and microbending stresses is thought to be the origin of fiber weakening and premature 

failure of this composite. 

6. SUMMARY 

A laser calibrated acoustic emission approach was combined with relatively simple micro- 

mechanical models to deduce the evolution of damage processes during the tensile straining of 

two different intermetallic matrix composites. 

A ductile matrix Ti-14Al-21Nb / SCS-6 composite emitted most of its detectable AE by 

annular microcracking of a brittle ß-depleted matrix zone surrounding the fibers. This damage 

process increased rapidly near the composite yield point and continued at a constant rate 

thereafter. An estimate of the acoustic moment of a fiber fracture identified the occurrence of 

about four fiber fracture events prior to sample failure. Clusters of annular fiber cracks were 

observed metallographically. Their mechanism of origin remains unclear, but may have been 

linked to the dynamic unloading waves which accompanied final sample failure. A global load 

sharing model which included consolidation fiber breakage was modified to account for elastic 
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residual stresses and matrix yielding. This model predicted a Stage II modulus that was -12% 

greater than measured. The extra softening appears to be connected to the extensive ß-depleted 

zone cracking. Cumulative fiber fragmentation was not observed, and a noncumulative 

mechanism was suspected, and may have contributed to a tensile failure at stresses significantly 

less than predicted. 

A brittle matrix Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 composite emitted strong AE from 

multiple matrix cracking. Matrix cracking initiated well below the stress where primary matrix 

cracks were first visually observed. Many of the smaller AE signals after the first primary crack 

event were consistent with mostly secondary cracks which had been arrested at fibers or 

intermittently extended to become primary cracks. Failure occurred after numerous fiber fractures 

at a fiber stress significantly lower than predicted by a fiber bundle model. The AE due to damage 

increased with stress in a power law fashion. Damage evolution data deduced from the acoustic 

emission measurements were combined with a relatively simple micro-mechanical model to 

predict the inelastic contributions of matrix cracks to the overall deformation behavior. Good 

agreement between the predicted and measured stress - strain behavior was found. Significant 

annular fiber cracks were observed and thought to be associated with the unloading waves 

associated with primary and secondary matrix cracking providing a mechanism for reducing the 

effective fiber strength. 
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APPENDIX 

Tensile Response of a Unidirectional Brittle Matrix Composite Loaded in The Fiber Direction 

The prediction ofinelastic deformation due to brittle matrix cracking in unidirectional fiber reinforced 

composites has been studied by Aveston et al. [63], Budiansky et al. [64] and more recently Curtin [65], 

who noted similarities between the matrix cracking process and the stochastic fiber fragmentation that 

often occurs in ductile matrix composites. He et al. [12] have conducted detailed finite element 

calculations of the inelastic strains associated with matrix cracking that compared favorably with analyses 

using shear lag models [66]. Here, a relatively simple (one-dimensional) elastic analysis is used. 

If the faces of a matrix crack remain approximately straight, equilibrium considerations necessitate 

that fiber-matrix interface sliding must occur along a shear recovery length given by [63]: 

rfcm V„ 

' - -ZV* (A-1} 

Along this length, matrix stress, cm', increases linearly from zero (at the crack plane) to the remote 

isostrain value, am. Conversely, fiber stress, oy', decreases linearly from a/Vf to the remote isostrain 

value, af. Hence, the matrix supports less load than what would be expected for an uncracked (isostrained) 

composite while the fiber supports more. The difference in their changes of length gives rise to a matrix 

crack opening, A. Composite strain, e, is simply the elongation of the (unbroken) fibers divided by their 

original length. Both are a function of the matrix crack spacing. 
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Since the site of cracking events is governed by the distribution and severity of defects [65], it is 

convenient to work with a mean crack spacing 2x' [12]. Two situations must be addressed. The first 

involves sliding along lengths less than one-half the mean crack spacing (i.e. when x' > /'), Fig. 11(a), 

while the second involves sliding along the entire length (i.e. when x'<F), Fig. 11(b). The equilibrium 

relation, a = V^oy+ Vmom, is satisfied throughout. Subscripts/and m differentiate the fiber and matrix. 

When x > /' (in the region x < x' - /' ): 

Stresses: 

Isostrain: 

Displacement (at x = x' - /'): 

When x'> I' (in the region x>x'-H): 

Stresses: 

Strains: 

Displacements (at x = x'): 

When x'>F: 

Matrix crack opening: 

ay = ay + £Ef m m ft. 

e = 
a-Vfa

T
f-vym 

VfEf+VmEm 

Composite strain: 

Vm<W,    x'-x 

ey = 
T 

Ef 

V.O. 

C'  = <7„ 
X -x 

fit 

T 
m m 

._.,   ,    ([ ,.      rfVm[oEm + Vf(o
T

mEf-c
T

fEm)]2 

a  —   4(Uf — U    )   —    r  
2^£m(V/£/+Vm£m)Tv 

e = 7 

(A.2) 

(A3) 

(A.4) 

(A.5) 

(A.6) 

£"IT"°«'+"   (A-7) 

(A.8) 

(A.9) 

Wfeen *' < F : 

Stresses (at x = 0): 

Stresses: 

Strains: 

Displacements (at x = x :) 

Matrix crack opening: 

Composite strain: 
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FIGURES 

Fig. 1. Details of the strain and AE instrumentation. A knife edge extensometer and miniature 
piezoelectric sensors were used. 

Fig. 2. Acoustic emission calibration curve. A laser generated thermoelastic source produced 
artificial AE of known moment strength for calibration. 

Fig. 3. Ti-14Al-21Nb / SCS-6 composite (microstructure). A 0.25 volume fraction of SCS-6 
fiber in a Ti-14Al-21Nb (wt.%) matrix. Consolidation processing damage included a 
cracked ß-depleted matrix zone. 

Fig. 4. Ti-14Al-21Nb / SCS-6 composite (stress - strain behavior and AE activity). A bi-linear 
behavior. The rate of AE activity increased rapidly near the composite yield point and 
continued at a constant rate thereafter, (a) Stress - strain behavior and AE moment 
strength, (b) AE event count and integrated moment. 

Fig. 5. Ti-14Al-21Nb / SCS-6 composite (annular ß-depleted matrix zone cracks). These were 
more severe and were nearly twice as frequent as those observed in the undeformed grip 
section, (a) Micrograph of a single crack, (b) Three-dimensional schematic of several 
cracks. 

Fig. 6. Ti-14Al-21Nb / SCS-6 composite (annular fiber cracks). Clusters of these cracks 
extended radially inward from near the midradius boundary and towards the carbon core 
forming an annular ring, (a) Micrograph of a single crack, (b) Three-dimensional 
schematic of a crack cluster. 

Fig. 7. Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 composite (microstructure). A 0.30 volume 
fraction of SCS-6 fiber in a Ti-13Al-15Nb-4Mo-2V-7Ta (wt.%) matrix. Consolidation 
processing damage included cracked reaction products and SCS decohesion. 

Fig. 8. Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 composite (stress - strain behavior and AE 
activity). Unstable tensile behavior was observed. The strength of AE activity increased 
dramatically at the point where the first primary matrix crack was observed, (a) Stress - 
strain behavior and AE moment strength, (b) AE event count and integrated moment. 

Fig. 9. Ti-13Al-15Nb-4Mo-2V-7Ta/SCS-6 composite (primary and secondary matrix cracks). 
Primary cracks traversed the whole cross-section and were present along the entire gauge 
length. Secondary cracks which arrested before traversing the whole cross section were 
also present, (a) Micrograph, (b) Three-dimensional schematic of primary and secondary 
matrix cracks. 

Fig. 10. Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 composite (closely spaced fiber fractures, annular 
fiber cracks and a primary matrix crack). Fiber fractures were numerous and often very 
closely spaced. Large matrix crack opening displacements were indicative of extensive 
sliding at the fiber-matrix interface. 

Fig. 11. Ti-13Al-15Nb-4Mo-2V-7Ta / SCS-6 composite (micro-mechanical model of primary 
matrix cracking). A relatively simple (one-dimensional) elastic analysis was used to 
model the tensile strain response of the cracked composite, (a) JC' > /'. (b) x' < l. 
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ACOUSTIC EMISSION ANALYSIS OF SCS-6 FIBER FRACTURE IN TITANIUM 

MATRIX COMPOSITES 

David J. Sypeck and Haydn N.G. Wadley 
School of Engineering and Applied Science 
University of Virginia 
Charlottesville, Virginia 22903 

INTRODUCTION 

One aspect of successful composite design involves development of a detailed 
knowledge of damage evolution. In metal matrix composites, cracking and/or plastic 
deformation of one or more constituents together with fiber-matrix interfacial debonding 
and sliding generally occur prior to catastrophic failure [1,2]. The nature and severity of 
these damage processes controls mechanical performance. In ductile matrix systems 
having a low fiber-matrix interfacial strength, the failure process can involve successive 
fragmentation of the fibers with increasing load. Broken fibers shed load (equally among 
the unbroken fibers in the case of global load sharing) until the fiber fracture density 
reaches some critical value and the sample catastrophically fails. Characterization of 
damage development has been slowed by a lack of NDE techniques. Here, the use of 
acoustic emission (AE) techniques is explored to further understand and quantify failure 
processes of this type. 

Acoustic emission (i.e. detectable elastic waves) accompanies abrupt energetic 
microfailure events such as brittle fiber fracture. They contain information about the 
micromechanism from which they originate (i.e. crack area, location, orientation, opening 
displacement, dynamic behavior, etc.) [3,4]. Modern AE techniques seek to extract this 
information through remote measurement and analysis of the boundary displacements (i.e. 
AE signals) caused by the waves. Only the growing defects are sensed, potentially with 
100% volume coverage. Previous studies [4,5] have shown the potential benefits of 
quantitative AE source analysis. Using models [6] originally developed for studying 
earthquakes and other geophysical disturbances, researchers have been able to relate 
measured AE signals to important characteristics of the sources causing them, thereby 
gaining quantitative insight into the fundamental mechanics of dynamic failure processes 
[4]. Here, these ideas are extended to investigate the micromechanics of fiber fracture in a 
fiber reinforced ductile matrix composite. 

To facilitate analysis with wave propagation results for isotropic elastic plates [7], a 
titanium plate containing a single (longitudinally aligned) 140 urn diameter silicon carbide 
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fiber served as the test sample. Tensile loading in the fiber direction caused successive 
fragmentation of the brittle fiber and high fidelity piezoelectric sensors at eight point 
contact locations on the surface of the plate simultaneously captured the ensuing AE. 
Differences in first wave arrival times were used to locate the site of fracture and a 
micromechanical model for fiber fracture helped simulate the AE. 

EXPERIMENTAL 

To fabricate the single fiber tensile sample, -35 mesh PREP CP grade titanium 
powder (Nuclear Metals, Inc., Concord, Massachusetts) and a single centrally aligned 
SCS-6 (Textron Specialty Materials, Lowell, Massachusetts) silicon carbide fiber were 
electron beam sealed in an evacuated molybdenum foil lined steel canister. Hot isostatic 
pressing in an ABB Autoclave Systems Inc. (Erie, Pennsylvania) MiniHIPper at 100 MPa 
and 825°C for 4 hours resulted in microscopically complete consolidation. Upon removal 
from the steel canister, the sample was machined to a dogbone geometry, Figure 1. 

Eight point contact miniature piezoelectric sensors [8] were spring loaded on the 
surface of the plate to measure boundary motion normal to the plate. Specific construction 
details and fidelity of the sensor are shown in Figure 2. A mixture of petroleum jelly and 
silver powder was used for acoustical and electrical coupling to the sample. Sensors were 
based on the broad band conical design [9] of the National Institute of Standards and 
Technology (NIST). To further reduce resonance, an acoustically lossy metallic alloy was 
cast into a brass cavity whose geometry was designed to reflect subsidiary waves away 
from the active piezoelectric element When calibrated at NIST [8,10], the fidelity of the 
sensor's displacement response approached that of the original NIST design but in a much 
more compact size. Its frequency sensitivity and phase response showed no significant 
resonance in the 10 kHz to 2 MHz range. 

-Atmi* 
precision 
digital 
oscilloscope 

shielded 
cable miniature 

piezoelectric 
sensors 

^ 

^T=JTZJ 
90 mm 

Figure 1. Experimental arrangement for fiber fragmentation. 
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Figure 2. Construction details and typical calibration of the miniature sensor [8]. 

Short coaxial leads from the piezoelectric sensors were first directed through 
Cooknell Electronics (Weymouth, Dorset, England) CA6 charge amplifiers (model SU1 
power supply unit) having a rated 250 mV/pC sensitivity and 10 kHz to 10 MHz 
bandwidth. Allen Avionics (Mineola, New York) 20 kHz high pass filters followed the 
charge amplifiers to eliminate unwanted environmental noise. The eight BNC leads 
directly connected to one of two LeCroy (Chestnut Ridge, New York) 7200 Precision 
Digital Oscilloscopes each having two 7242 plug-ins. AE signals were represented by 
20,000 data points evenly distributed over a 50 |isec time interval (2.5 nsec per data 
point). A 300 kN capacity Instron (Canton, Massachusetts) 4208 electromechanical 
materials testing instrument equipped with a 300 kN loadcell (model 2518-114) and 250 
kN serrated face wedge action grips (model A212-1022) was used to apply tensile load at 
a constant crosshead rate of 0.1 mm/min. 

RESULTS 

More than 40 individual AE events were observed during the test. The first at a plate 
tensile stress of 215 MPa and the last at 500 MPa. Shown in Figure 3 are measured AE 
signals from an event occurring at 484 MPa. Note the differences in first wave arrival 
times at the different sensor locations. The strength and high frequency content of the 
signals are indicative of an abrupt release of a relatively large amount of elastic energy. 
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sensor 1 2 3 4 5 6 7 8 
x (mm) -6.2 24.3 -24.8 9.6 -12.5 27.2 -30.8 11.4 
y (mm) 13.2 1.7 -4.5 -19.1 6.3 18.1 -14.1 -10.8 
2 (mm) 2.15 2.15 2.15 2.15 -2.15 -2.15 -2.15 -2.15 

Atj (usec) 1.87 1.71 3.52 1.22 1.86 3.58 4.70 0.00 

Figure 3. Measured AE signals, sensor coordinates and time of flight differences. 

SOURCE LOCATION 

Suppose a cartesian coordinate system is located at the center of the sample, Figure 1. 
Let x', y' and z' be the unknown location of the source. The ith sensor located at Xj, y( 

and Zj will experience a signal when 

(x'-xi)
2 + (y,-yi)

2 + (z, V = (cpti)2 
(1) 

where tj is the time required for the first compression wave to reach the sensor and c   is 
its velocity. Since only differences in first wave arrival times can be obtained from the 
experimental data, let t0 be the travel time required to reach the closest sensor and At| be 
the time difference between the closest and the ith sensor. Thus tj = t0 + Atj. Location is 
accomplished by solving for unknowns x', y', z' and t0 using the measured Atj values. 
To linearize the problem, observe that subtracting any ith sensor equation from any jth 
provides one linear equation. If there are at least five sensors, four linearly independent 
equations can be formed via numerous routes. For an array of T) sensors, there are a 
maximum N = T|(T| - 1 )/2 unique sensor equation subtractions which can be performed 
[8]. 

Time of flight differences in Figure 3 were found within approximately 20 nsec 
accuracy by determining when the AE signal magnitude first exceeded the background 
noise. The N = 28 linear equations (overdetermined and not linearly independent) were 
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formed and then solved using a linear least squares algorithm. Using c   = 6.07 mm/usec 
for titanium, the returned source location was x' = 5.5 mm, y' = -3:7 mm, z' = -2.9 
mm and t0 = 1.48 \isec which was consistent with the source being near the plate 
centerline (i.e. x axis) and the approximate location of the fiber. We note that accuracy in 
z' is problematic for thin plates because the distance between a source and a sensor "far" 
from the source is not substantially affected by changes in z'. 

ACOUSTIC EMISSION SIGNAL SIMULATION 

Elastic radiation from an abrupt failure process like an earthquake or growing 
microcrack is induced by the release of elastic strain energy associated with a sudden 
creation of discontinuity in the displacement field or stress field across the surface of 
failure. In terms of fault characteristics, Burridge and Knopoff [6] arrive at a body force 
equivalent for the fault 

pf,(x', f) = -Jv,{[uk](5, t')cklij(5)8,.(x'£) + [ukJ]($, f)cilkj(S)S(x';!;) }dS     (2) 

where pfj(x', f) is the body force per unit volume. The fault surface is represented by 
Z(£) • [uk](^, t') and' [ut j](^, f) are the displacement discontinuity and its derivative 
(traction discontinuity) across the fault, ckIij(£) are the elastic constants in the 
neighborhood of the fault, v, is the unit normal to £(!;) and 8 is the Dirac delta function. 

Since internal sources must be self equilibrating, the traction discontinuity term in 
Equation (2) vanishes (i.e. [uk_j](^, t') = 0) simplifying matters. For a point source 
centered at x\ the seismic moment tensor (sometimes called the stress drop tensor or 
dipole tensor) is used to characterize the source [11]. 

My = Jv1[uk](^)cklij(^)d2: (3) 

The point displacement Uj(x, t)due to wave motion 

Ui(x,t) = MjJ^G^xjx'.t-OfWdt' (4) 

involves convolving the source time dependence f (f) (i.e. source function) with spatial 
derivatives of the elastodynamic Green's tensor, G;: k(x;x', t -1'). Each of its 
components represent the point response in the ith direction at x due to an impulsive (i.e. 
delta function) body force dipole concentrated at x'. Subscripts j and k indicate the sense 
and separation direction of the dipole. Solutions to the response of a unit ramp are 
available [7]. In this case, Equation (4) takes the form 

Ui(x, t) = MjJ^G? k(x;x, t - f) f(f)df (5) 
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Figure 4. Micro-mechanics of fiber fracture. 

where G:, lf(x;x', t -1') is the unit ramp response. 

An estimate of the moment tensor for the fracture of a cylindrical fiber can be 
obtained by examination of Figure 4. Provided changes in radial and circumferential 
stresses are small, the analysis is simplified considerably by treating this as a one 
dimensional problem. The crack opening displacement A is given by 

A = 
ra 
2ET 

(6) 

where the shear recovery length / = ra/2x has been assumed, a is the remote fiber 
tensile stress, x the fiber-matrix interfacial shear stress, r the fiber radius and E its elastic 
modulus. For a matrix rigid in the x direction, debonding must occur along a length of at 
least I to satisfy equilibrium. In this manner, the crack opening is quantified as a function 
of remote fiber stress and interfacial shear stress. Symmetry simplifies Equation (3) (i.e. 
shear contributions cancel) and we arrive at the moment tensor 

M:; 
X + 2U.0 0 

0 ?i 0 
0     0     X 

■ Arcr (7) 

in terms of the fiber Lame constants X = vE/(l + v)(l-2v) and u. = E/2(l+v) 
where v is the Poisson ratio. 

To estimate the likely strength of a SCS-6 fracture source, let a fracture event occur at 
a fiber stress of a = 3500 MPa. Take the interfacial shear stress to be z = 140 MPa 
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while the radius and elastic moduli are r = 70 (im, E = 400 GPa and v = 0.14 
respectively. The crack opening is computed as A = 7.7 urn and the moment tensor 
becomes: 

Mij = 

49.4  0 
0   8.0 
0     0 

0 

0 

8.0 

N • mm (8) 

The returned source location suggested that sensor 3 was oriented at an angle of 
approximately 1.5° with respect to the x axis of the selected source. We disregarded this 
small rotation and used Equation (8) directly. Unit ramp responses were computed for an 
infinite isotropic plate using a FORTRAN 77 code [7]. x' = 5.5 mm, y' = -3.7 mm and 
z' = 0.0 mm were the source coordinates we worked with. The properties of titanium 
were it = 43.9 GPa, c   = 6.07 mm/Lisecand cs = 3.13 mm/usec for the shear wave 
velocity. 450 data points beyond the first wave arrival and a 0.005 usec step size resulted 
in 2.25 usec of simulation data. This was enough to allow a reasonable comparison with 
the measured AE signal while avoiding reflections from the sides of the plate which were 
not accounted for (i.e. infinite plate) in the simulation. The convolution in Equation (5)- 
was performed (discrete) using the second time derivative of a symmetrical parabolic 
ramp source function which had 0.38 |isec risetime. It first acted at t = t' = 0. We 
observe good agreement between the simulated and measured AE signal. Figure 5. 
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Figure 5. Comparison between experiment and theory. 
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CONCLUSION 

A multichannel quantitative acoustic emission system has been developed and used to 
record acoustic emission associated with the successive fragmentation of a SCS-6 fiber in 
a titanium matrix plate. Three dimensional location of events has been accomplished and 
good agreement obtained between simulated and measured signals. 
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